Physical Properties of Soils

Author(s):  
Robert F. Keefer

Soil texture can be defined as the size and proportion of the soil particles—sand, silt, and clay—that are present in a soil. . . . Sand is the largest—from 0.05 to 2mm—and considered coarse texture; consists of angular spheres or cubes. Silt is intermediate—from 0.002 to 0.05mm—and considered medium texture; consists of properties between sand and clay. Clay is the smallest, being less than 0.002mm, and considered fine texture; appears as plate-like or flakes. . . . Any individual soil can be placed on the soil textural diagram when relative amounts of sand, silt, and clay are specified. As a general rule, the type of soil can be determined by feel when squeezed between the fingers. If the soil feels harsh and gritty it would be classified as a sandy soil. One that feels smooth and not sticky or plastic would be a silt soil, and one that is sticky or plastic would be a clay. Another way to distinguish between soils is their ability to form a ribbon. Soils that will not form a ribbon are sands. Those that form a fragile ribbon are loams; those that easily form a thick ribbon are clay loams; and those that easily form a long, thin, flexible ribbon are clays. . . . To be classified a sand, the soil must have more than 45% sand. To be classified a clay, the soil must have more than 20% clay. Loam is a mixture of sand, silt, and clay in about equal proportions. It is considered “ideal” for growing plants. . . . Weight of the soil solids is called “particle density.” For most common mineral soils (soils in which organic matter is usually less than 20%), particle density is about 2.65 g/cm3. Organic soils (where organic matter is greater than 20%) are usually about half as heavy, with particle density between 1.1 to 1.4 g/cm3. This measurement would be an important factor to consider if much material was to be transported for topsoiling.

2006 ◽  
Vol 86 (1) ◽  
pp. 57-60 ◽  
Author(s):  
T. E. Redding ◽  
K. J. Devito

Particle density is a fundamental soil physical property, yet values of soil and organic matter particle density (ρs and ρo) vary widely in the literature. We measured particle density of organic soils from five wetland types, and from exposed sediments of drying ponds, in northern Alberta, Canada. Our measured values of organic soil and pond sediment ρs varied widely (1.43–2.39 Mg m-3); however, calculated values of ρo (1.34–1.52 Mg m-3) were relatively constant. The measured and calculated ρs and ρo values were similar to those obtained in published studies using similar methods, but were higher than the values provided in many reference texts. Given the relatively small variability in ρo, the use of mean values of ρo, combined with measurements of organic matter loss-on-ignition, shows promise as a simple method for obtaining reliable estimates of ρs across a range of wetland types. Key words: Particle density, peat, organic matter, wetland soil, loss-on-ignition


2019 ◽  
Vol 34 (3) ◽  
pp. 362-370
Author(s):  
Jose V. Fernandez ◽  
D. Calvin Odero ◽  
Gregory E. MacDonald ◽  
Jason A. Ferrell ◽  
Brent A. Sellers ◽  
...  

AbstractDissipation of S-metolachlor, a soil-applied herbicide, on organic and mineral soils used for sugarcane production in Florida was evaluated using field studies in 2013 to 2016. S-metolachlor was applied PRE at 2,270 g ha−1 on organic and mineral soils with 75% and 1.6% organic matter, respectively. The rate of dissipation of S-metolachlor was rapid on mineral soils compared with organic soils. Dissipation of S-metolachlor on organic soils followed a negative linear trend resulting in half-lives (DT50) ranging from 50 to 126 d. S-metolachlor loss on organic soils was more rapid under high soil-moisture conditions than in corresponding low soil-moisture conditions. On mineral soils, dissipation of S-metolachlor followed an exponential decline. The DT50 of S-metolachlor on mineral soils ranged from 12 to 24 d. The short persistence of S-metolachlor on mineral soils was likely attributed to low organic matter content with limited adsorptive capability. The results indicate that organic matter content and soil moisture are important for persistence of S-metolachlor on organic and mineral soils used for sugarcane production in Florida.


1968 ◽  
Vol 48 (3) ◽  
pp. 243-253 ◽  
Author(s):  
J. A. McKeague ◽  
A. W. H. Damman ◽  
P. K. Heringa

The thin, dark-colored, cemented layers that occur commonly in coarse deposits under peat in humid coastal areas of Newfoundland were found to be cemented mainly by amorphous Fe and Mn or by Fe compounds. The Mn contents of these pans varied from about 0.1 to 15%, and Mn tended to accumulate in the lower part of the pan. The Fe-Mo pans could be distinguished in the field from Fe or Fe-organic matter pans by the fact that the black layer at the base of the Fe-Mn pans reacted vigorously with cold 3% H2O2. The Fe-organic pans, which usually had a rusty brown layer at the base, reacted only slowly. The Fe-Mn pans were associated generally with more humid conditions, as indicated by a greater thickness of peat, than those characteristic of the Fe-organic matter pans. We think that reduction, translocation as Fe+2 and Mn+2 and subsequent oxidation and precipitation of mixed hydrous oxides must be involved in the formation of the Fe-Mn pans, whereas translocation and precipitation of Fe-organic complexes are thought to be involved in the formation of Fe-organic matter pans.Many of the Fe-Mn pans occur below organic soils, but they also occur within the sola of some mineral soils. Thus, they should be recognized in soil mapping and accommodated in the soil classification system.


2021 ◽  
Vol 9 ◽  
Author(s):  
A. Vilhelmiina Harju ◽  
Ilkka Närhi ◽  
Marja Mattsson ◽  
Kaisa Kerminen ◽  
Merja H. Kontro

Views on the entry of organic pollutants into the organic matter (OM) decaying process are divergent, and in part poorly understood. To clarify these interactions, pesticide dissipation was monitored in organic and mineral soils not adapted to contaminants for 241 days; in groundwater sediment slurries adapted to pesticides for 399 days; and in their sterilized counterparts with and without peat (5%) or compost-peat-sand (CPS, 15%) mixture addition. The results showed that simazine, atrazine and terbuthylazine (not sediment slurries) were chemically dissipated in the organic soil, and peat or CPS-amended soils and sediment slurries, but not in the mineral soil or sediment slurries. Hexazinone was chemically dissipated best in the peat amended mineral soil and sediment slurries. In contrast, dichlobenil chemically dissipated in the mineral soil and sediment slurries. The dissipation product 2,6-dichlorobenzamide (BAM) concentrations were lowest in the mineral soil, while dissipation was generally poor regardless of plant-derived OM, only algal agar enhanced its chemical dissipation. Based on sterilized counterparts, only terbutryn appeared to be microbially degraded in the organic soil, i.e., chemical dissipation of pesticides would appear to be utmost important, and could be the first response in the natural cleansing capacity of the environment, during which microbial degradation evolves. Consistent with compound-specific dissipation in the mineral or organic environments, long-term concentrations of pentachloroaniline and hexachlorobenzene were lowest in the mineral-rich soils, while concentrations of dichlorodiphenyltrichloroethane (DTT) and metabolites were lowest in the organic soils of old market gardens. OM amendments changed pesticide dissipation in the mineral soil towards that observed in the organic soil; that is OM accelerated, slowed down or stopped dissipation.


Author(s):  
Partyka T. ◽  
Hamkalo Z.

Content of cold water extracted organic matter (CWEOM) in organic and mineral soils of Upperdniester alluvial plane was estimated. The largest CWEOM content (mg∙100 g-1) in the upper (10 cm) soil layers was found in peat soils – 105-135, and the smallest – 20-30– in arable sod and meadow soils. The highest CWEOM content was found in the lower horizons of peat soil, where it reaches 290 mg∙100 g-1. Strong correlation (r=0.81 -0.99; P<0.05) between CWEOM and TOC was found. It indicates the presence of dynamic equilibrium in the SOM system that supports certain level of labile pool compounds – the main source of bioavailable materials and energy.


1962 ◽  
Vol 34 (1) ◽  
pp. 34-40 ◽  
Author(s):  
Mikko Sillanpää

A study was conducted to evaluate the relation of the total contents of Co, Cu, Mn, Ni, Pb and Zn on soil texture and organic matter content. In spite of a wide variation, a clear tendency for the trace element contents (Pb being an exception) to decrease with increasing particle size was found. The reason for this is believed to be associated with the geological origin of the soil material and with the relative resistance to weathering of the minerals from which the trace elements are derived. In mineral soils the contents of trace elements increased with increasing organic matter and the maximum contents are likely to be found in soils containing from 5 to 15 per cent organic matter. A further increase in organic matter tends to decrease the total contents of trace elements expressed on a volume basis (kg/ha). The causes underlying this relation, which are believed to be pedological rather than chemical, are discussed.


2021 ◽  
Author(s):  
Debjani Sihi ◽  
Stefan Gerber

&lt;p class=&quot;rolelistitem&quot;&gt;Models of soil organic matter (SOM) decomposition are critical for predicting the fate of soil carbon (and nutrient) under changing climate. Traditionally, models have used a simple set-up where the substrate is divided into conceptual pools to represent their resistance to microbial degradation, and decomposition rates are often proportional to the amount of substrate in each pool. Emerging models now consider explicit microbial dynamics and show that SOM loss under warming may be fundamentally different from the classical models. Microbial explicit models use reaction kinetics, represented on a concentration basis. However, when the substrate makes up most of the volume of soils (e.g., the organic horizon in forest soils or peat), an increase or decrease in SOM does not, or only very little, affect concentrations of microbes and substrate. Consequently, reduction in SOM does not reduce the amount of substrate the microbial biomass encounters. This problem does not occur in classical models like CENTURY. We incorporated the effect of organic matter on soil volume in several microbial models. If microbes are solely limited by enzymes, organic soils or peats are decomposed very quickly as there is no mechanism that stops the positive feedback between microbial growth and SOM concentration until the substrate is gone. Alternative formulations that account for carbon limitation or microbial &amp;#8216;cannibalism&amp;#8217; display a sweet spot of soil carbon concentration. Interestingly, a response to warming will depend on the amount of organic vs. mineral materials. Apparent Q&lt;sub&gt;10&lt;/sub&gt; was higher in fully organic soil than in mineral soils, which was pronounced when small to moderate amounts of the mineral matter was present that diluted the substrate for microbes. We suggest that model formulations need to be clear about the assumption in key processes, as each of the steps in the cascade of biogeochemical reaction can produce surprising results.&lt;/p&gt;


2008 ◽  
Vol 22 (4) ◽  
pp. 565-570 ◽  
Author(s):  
S.D. Willingham ◽  
N.R. Falkenberg ◽  
G.N. McCauley ◽  
J.M. Chandler

Clomazone was labeled for rice in 2001; however, that label excluded its use on coarse- (light) textured soils, including sand, loamy sand, and sandy loam with less than 1% organic matter due to rice injury. Field studies conducted in 2005, 2006, and 2007 evaluated weed control and tolerance of rice to early postemergence (EPOST) applications of clomazone alone and tank mixed with other herbicides on sandy loam and clay loam soils. At 42 d after treatment (DAT), broadleaf signalgrass (BRAPP) and barnyardgrass (ECHCG) control was > 86%. At 14 DAT, rice injury was greatest (13%) from clomazone applied preemergence (PRE) at 0.44 kg ai/ha on sandy soil. Annual sedge (CYPCP) control was > 78% on sandy loam soils at 14 DAT, but increased to > 90% by 42 DAT. On clay loam soils, CYPCP control at 42 DAT ranged from 60 to 76% from clomazone alone or tank mixed with cyhalofop or fenoxaprop. All other tank mixes provided > 80% control. Hemp sesbania (SEBEX) control was > 80% from all tank mixes. Clomazone alone provided < 77% control. Data suggest that clomazone can be used EPOST in combination with other herbicides without causing significant rice injury on sandy loam soils in Texas.


2021 ◽  
Author(s):  
Iqbal Ahmad ◽  
Bushra Khan ◽  
Nida Gul ◽  
Muhammad Khan ◽  
Javaid Iqbal ◽  
...  

Abstract Lead (Pb) contamination in soil and subsequent transport in groundwater poses severe threats to the food safety and human health. In current study, the effects of soil organic matter on sorption behavior of Pb onto six agricultural soils were investigated by batch sorption experiments and microscopic characterization. Results indicated that Pb sorption onto agricultural soils was dominated by the soil organic matter content and soil texture. The decrease of organic matter content reduced the sorption capacity of Pb onto agricultural soils. Based on soil texture, the Pb sorption was highest in clay soil and lowest in silt type of soil. The overall Pb sorption was in the order of clay > clay loam > silty clay loam ≈ loam > silt loam > silt. The sorption isotherms of measured aqueous and soil phase Pb concentrations were fit well with the linear sorption model. The organic carbon normalized partition coefficients (Log KOC) ranged from 2.90 to 2.99. Linear partition coefficient (Kd) values were positively correlated with the soil properties, such as clay (R2 =0.90), OC (R2 =0.94) and pH (R2 = 0.45); however, weak correlation was found between Kd and soil sand contents (R2 = 0.12). The leachability model showed potential risk of Pb leaching from silt soil with lowest organic matter content. The findings are of significant importance for understanding potential threats of Pb to the soil ecosystem, groundwater, plants, and humans.


2017 ◽  
Author(s):  
Annelie Säurich ◽  
Bärbel Tiemeyer ◽  
Axel Don ◽  
Michel Bechtold ◽  
Wulf Amelung ◽  
...  

Abstract. Drained peatlands are hotspots of carbon dioxide (CO2) emissions from agriculture. As a consequence of both drainage-induced mineralisation and anthropogenic mixing with mineral soils, large areas of former peatlands under agricultural use now contain soil organic carbon (SOC) at the boundary between mineral and organic soils and/or underwent a secondary transformation of the peat (e.g. formation of aggregates). However, low carbon organic soils have rarely been studied since previous research has mainly focused on either mineral soils or true peat soils. The aim of the present study was to evaluate the soil organic matter (SOM) vulnerability of the whole range of organic soils including very carbon rich mineral soils (73 g kg−1 


Sign in / Sign up

Export Citation Format

Share Document