Biodiversity Along Core–Periphery Clines

Author(s):  
Sergei Volis ◽  
Salit Kark

The study of biodiversity has received wide attention in recent decades. Biodiversity has been defined in various ways (Gaston and Spicer, 1998, Purvis and Hector 2000, and chapters in this volume). Discussion regarding its definitions is dynamic, with shifts between the more traditional emphasis on community structure to emphasis on the higher ecosystem level or the lower population levels (e.g., chapters in this volume, Poiani et al. 2000). One of the definitions, proposed in the United Nations Convention on Biological Diversity held in Rio de Janeiro (1992) is “the diversity within species, between species and of ecosystems.” The within-species component of diversity is further defined as “the frequency and diversity of different genes and/or genomes . . .” (IUCN 1993) as estimated by the genetic and morphological diversity within species. While research and conservation efforts in the past century have focused mainly on the community level, they have recently been extended to include the within-species (Hanski 1989) and the ecosystem levels. The component comprising within-species genetic and morphological diversity is increasingly emphasized as an important element of biodiversity (UN Convention 1992). Recent studies suggest that patterns of genetic diversity significantly influence the viability and persistence of local populations (Frankham 1996, Lacy 1997, Riddle 1996, Vrijenhoek et al. 1985). Revealing geographical patterns of genetic diversity is highly relevant to conservation biology and especially to explicit decision-making procedures allowing systematic rather than opportunistic selection of populations and areas for in situ protection (Pressey et al. 1993). Therefore, studying spatial patterns in within-species diversity may be vital in defining and prioritizing conservation efforts (Brooks et al. 1992). Local populations of a species often differ in the ecological conditions experienced by their members (Brown 1984, Gaston 1990, Lawton et al. 1994). These factors potentially affect population characteristics, structure, and within-population genetic and morphological diversity (Brussard 1984, Lawton 1995, Parsons 1991). The spatial location of a population within a species range may be related to its patterns of diversity (Lesica and Allendorf 1995). Thus, detecting within-species diversity patterns across distributional ranges is important for our understanding of ecological and evolutionary (e.g., speciation) processes (Smith et al. 1997), and for the determination of conservation priorities (Kark 1999).

2005 ◽  
Vol 31 ◽  
pp. 335-362 ◽  
Author(s):  
Virginie Maris

The decline of biodiversity is without a doubt one of the most important symptoms of what could be called a “global environmental crisis.” Our ability to stop this decline depends on the capacity to implement an effective, collective system of preservation on a global scale. In this paper, I will analyze the Convention on Biological Diversity (CBD), the international agreement that aims at creating this type of global cooperation.While I consider that cosmopolitan governance is desirable, given the legitimacy of the preservation of global biological diversity, I will not attempt to directly argue for it here. Still, it is worth mentioning some of the reasons that might lead us to adopt this position. First, certain past conservation measures have been harshly criticized as imperialistic. For example, Project Tiger in India, which Western environmentalists often cited as a success, have had a deleterious effect on local populations.


Author(s):  
Aurel MAXIM ◽  
Mignon ŞANDOR ◽  
Lucia MIHALESCU ◽  
Ovidiu MAXIM ◽  
Oana MARE ROŞCA

During the second part of the twentieth century the cultivated plants have been faced with genetic erosion, because of the expandinding industrial farming systems. The sustainable agriculture can not exist without a rich genetic diversity. After the United Nations Conference from Rio de Janeiro (1992), when the Convention on Biological Diversity was adopted, a series of acts and european references that protect agrobiodiversity had emerged. Between 2007 and 2010, at the University of Agricultural Sciences and Veterinary Medicine a program which aims to identify and conserve local vegetable varieties was conducted. Out of 290 cultivars, 171 (58.9%) were genuine local varieties. There were collected 12 cucumber cultivars from the following counties: Salaj (7), Cluj (3), Bistrita-Nasaud (1) and Satu-Mare (1). The morphologic caractheristics proved that all this 12 cultivars were authentic and valuable local varieties. The local varieties were agronomical, biological and biochemical characterized, both in field and laboratory. The seeds achieved from those 12 local varieties were preserved in the Suceava Gene Bank, from where stakeholders (farmers, agronomists, researchers) can obtain seeds.


Author(s):  
Falko Buschke

In May, nations of the world will meet to negotiate the post-2020 Global Biodiversity Framework under the Convention on Biological Diversity. An influential ambition is “bending the curve of biodiversity loss”, which aims to reverse the decline of global biodiversity indicators. A second relevant, yet less prominent, milestone is the 20th anniversary of the publication of The Unified Neutral Theory of Biodiversity and Biogeography. Here, I apply neutral theory to show how global biodiversity indicators for population size (Living Planet Index) and extinction threat (Red List Index) decline under neutral ecological drift. This demonstrates that declining indicators alone do not necessarily reflect deterministic species-specific or geographical patterns of biodiversity loss. Thus, “bending the curve” could be assessed relative to a counterfactual based on neutral theory, rather than static baselines. If used correctly, the 20-year legacy of neutral theory can be extended to make a valuable contribution to the post-2020 Global Biodiversity Framework


2021 ◽  
Vol 8 ◽  
Author(s):  
Libby Liggins ◽  
Cory Noble ◽  

The genetic diversity of populations plays a crucial role in ensuring species and ecosystem resilience to threats such as climate change and habitat degradation. Despite this recognized importance of genetic diversity, and its relevance to the Convention on Biological Diversity and the United Nations Sustainable Development Goals, it remains difficult to observe and synthesize genetic data at a national scale. The “Ira Moana—Genes of the Sea—Project” (https://sites.massey.ac.nz/iramoana/) has worked to improve stewardship of genetic data for Aotearoa New Zealand’s (NZ) marine organisms to facilitate marine genetic biodiversity observation, research, and conservation. The Ira Moana Project has established interoperable data infrastructures and tools that help researchers follow international best-practice (including the FAIR Principles for Data Stewardship and CARE Principles for Indigenous Data Governance) and contribute to a national genetic data resource. Where possible, the Project has employed existing infrastructures (such as the Genomic Observatories Metadatabase, GEOME) to allow interoperability with similar research activities, but has also innovated to accommodate the national interests of NZ. The Ira Moana Project has an inclusive model, and through presentations, workshops, and datathons, it has provided training, education, and opportunities for collaboration among NZ researchers. Here, we outline the motivations for the Ira Moana Project, describe the Project activities and outcomes, and plans for future development. As a timely response to national and international pressures on genetic biodiversity research, it is hoped that the Ira Moana Project will facilitate NZ researchers, communities, and conservation practitioners to navigate this crucial period, and provide tangible solutions nationally and globally.


EDIS ◽  
1969 ◽  
Vol 2003 (4) ◽  
Author(s):  
Center For Natural Resources

Biodiversity or biological diversity is a relatively new term in ecology. It became popular in the 1980s and is not yet properly understood by all non-ecologists. Biodiversity refers to the variety and richness among living organisms and the ecological systems and processes of which they are a part. There are three levels of biodiversity: habitat or ecosystem diversity, genetic diversity, and species diversity. This publication was produced by the Center for Natural Resources at the University of Florida. CNR 4 is part of a Program Summary Series. First published: September 2000. Minor revision: March 2003.  https://edis.ifas.ufl.edu/cr004


2007 ◽  
Vol 41 ◽  
pp. 45-52 ◽  
Author(s):  
E. Fimland

SummaryGeneral trends of development imply an increasing uniformity of animal genetic resources, caused by the loss of endangered breeds and increased inbreeding within commercial breeding populations. The implications of these trends point to a reduction in the genetic diversity of the animal genetic resources, which may reduce possibilities for utilization in the future, while at the same time a dramatic change in environmental production conditions can be observed. In order to change this developmental trend, sustainable management of animal genetic resources must be promoted globally. The fundamental issues for such sustainable management are illustrated by the principles given in the Convention on Biological Diversity. In order to accomplish sustainable management of these resources, the following actions must be taken:• The development of policies to promote national and global responsibility for maintaining genetic diversity, which will not be addressed within this paper• The development of knowledge as a fundamental concept to impose sustainable management principles on these animal genetic resources. This will be dealt with in this paper. A more complete description of these features can be found in Woolliams et al, 2005 in (Sustainable Management of Animal Genetic Resources).


Paleobiology ◽  
1997 ◽  
Vol 23 (2) ◽  
pp. 181-206 ◽  
Author(s):  
Mike Foote

Morphological analysis of four higher taxa of fossil marine invertebrates shows that, over the history of paleontology, there is no general tendency for morphologically extreme or modal species and genera to be described preferentially early or late. Reconstructing the expected evolutionary sequences of morphological disparity that would have been estimated at various times during the past century and a half reveals features that are sensitive to sampling (for example, peak trilobite disparity in the Ordovician, peak of post-Paleozoic crinoid disparity in the Triassic, and peak blastoid disparity in the Permian), as well as more robust features (for example, increase in trilobite disparity from the Cambrian to the Ordovician, continued increase in trilobite disparity despite a drop in taxonomic diversity after the Early Ordovician, decrease in blastoid disparity from the Devonian to the Carboniferous, and increase in crinoid disparity from the Jurassic to the Cretaceous followed by decline during the Cretaceous). Although we still have much to learn about the evolution of form, in many respects our view of the history of biological diversity is mature.


2010 ◽  
Vol 24 (1) ◽  
pp. 86-88 ◽  
Author(s):  
LINDA LAIKRE ◽  
FRED W. ALLENDORF ◽  
LAUREL C. ARONER ◽  
C. SCOTT BAKER ◽  
DAVID P. GREGOVICH ◽  
...  

Author(s):  
Rea Pärli ◽  
Eva Lieberherr ◽  
Rolf Holderegger ◽  
Felix Gugerli ◽  
Alex Widmer ◽  
...  

AbstractGenetic diversity is a fundamental component of biological diversity, and its conservation is considered key to ensure the long-term survival of natural populations and species. National and international legislation increasingly mandates a monitoring of genetic diversity. Examples are the United Nation’s Convention on Biological Diversity (CBD) Aichi target 13 and the current post-2020 negotiations to specify a new target for maintaining genetic diversity. To date, only a few pilot projects have been launched that systematically monitor genetic diversity over time in natural populations of a broad variety of wild species. The Swiss Federal Office for the Environment mandated a feasibility study in 2019 for implementing a national monitoring of genetic diversity in natural populations. To obtain information on whether stakeholders are interested in such a systematic monitoring, what they would expect from such a monitoring and where they see respective caveats, we conducted an online survey, which 138 (42% of those surveyed) Swiss stakeholders answered. We find that Swiss stakeholders are generally aware of the lacking evidence regarding the status of genetic diversity in wild populations and species. Accordingly, most stakeholders are interested in a monitoring of genetic diversity and see opportunities for the application of its results in their work. Nevertheless, stakeholders also expressed concerns regarding financial resources and that the results of a genetic diversity monitoring program would not benefit conservation practice. Our findings highlight the importance of stakeholder engagement and demonstrate the value of a detailed stakeholder analysis prior to developing and implementing a genetic diversity monitoring program. A powerful tool for examining the constellation and interactions of the different stakeholders are social network analyses (SNAs). Finally, it is particularly important to communicate transparently about the possibilities and limitations of a genetic diversity monitoring program as well as to closely involve stakeholders from the beginning to increase the acceptance of genetic diversity monitoring and facilitate its implementation.


2020 ◽  
Author(s):  
Sean Hoban ◽  
Catriona Campbell ◽  
Jessica da Silva ◽  
Robert Ekblom ◽  
W Chris Funk ◽  
...  

AbstractGenetic diversity is critically important for all species-domesticated and wild- to adapt to environmental change, and for ecosystem resilience to extreme events. International agreements such as the Convention on Biological Diversity (CBD) have committed to conserve and sustainably and equitably use all levels of biodiversity-genes, species and ecosystems-globally. However, assessment and monitoring of genetic diversity are often overlooked, and there are large knowledge and policy gaps regarding genetic diversity conservation. In this study, we present the first quantitative analysis of genetic diversity assessments conducted by Parties to the CBD. We conducted a detailed, systematic analysis of 114 CBD 5th (submitted 2014) and 6th (submitted 2018) National Reports to quantitatively assess actions, progress on targets, values and indicators related to genetic diversity. First, we found that the importance of genetic diversity is recognised by most Parties to the CBD, and that recognition increased over time. However, genetic targets mainly addressed genetic diversity within cultivated plants, farm animals, and crop wild relatives, with little focus on other wild species. Also, actions for conserving genetic diversity primarily concerned ex-situ facilities and policy, rather than monitoring and intervention for maintaining genetic diversity in situ. The most commonly used indicators of genetic diversity status were the number of genetic resources in conservation facilities, number of threatened breeds, and Red List Index, which are not well correlated to genetic erosion in most species -- highlighting that genetic change is poorly monitored by current indicators. Lastly, analyses of genetic data observations, indigenous use and knowledge of genetic diversity, and strategies being developed and implemented to conserve genetic diversity are highly under-reported. We make several recommendations for the post-2020 CBD Biodiversity Framework to improve awareness, assessment, and monitoring, and facilitate consistent and complete reporting of progress of genetic diversity in future National Reports.Article Impact StatementAn analysis of genetic diversity in CBD National Reports neglects non-domesticated species and demonstrates need for sufficient indicators.


Sign in / Sign up

Export Citation Format

Share Document