Conceptual Approaches to Pedogenesis

Author(s):  
Vance T. Holliday

To fully appreciate and apply pedologic principals in archaeology, some of the theoretical underpinnings of pedology and especially soil geomorphology must be outlined. Pedologists and soil geomorphologists have attempted to describe, if not model, the processes of soil formation, the factors that drive the processes, and the evolution of soils as landscapes evolve (summarized by Smeck et al., 1983; Johnson and Watson-Stegner, 1987; and Gerrard, 1992, pp. 1–50, 217–220). The task is a difficult one, however, because of the complex and variable sets of processes responsible for soil development. Several of the resulting approaches have proven useful for conceptualizing pedogenesis and, more important, for interpreting soils. In addition to understanding soil-forming processes for interpreting soil profiles, understanding soil formation is important for understanding site formation. The conceptual approaches particularly useful in soil geomorphic and geoarchaeological research are summarized below. Soil-forming processes as components of site formation are discussed more fully in chapter 10. The following discussions of conceptual approaches to pedogenesis are roughly arranged in order of increasing complexity. The “multiple-process model” is essentially a categorization of soil-forming processes. It does not explain pedogenesis but is a useful way to sort and group the many soil-forming processes. The “state factor” approach and the “K-cycle” concept do not deal directly with soil formation, but instead focus on important external factors and processes that drive or affect pedogenesis such as climate and geomorphic evolution. The “soil evolution” model and the “new global view of soils” attempt to integrate pedogenic process with landscape evolution, climate, and other factors. This section closes with discussion of two important aspects of pedogenesis and pedogenic pathways that offer caveats in the use of soils for reconstructing the past. Soils are the result of biogeochemical processes determined and driven by the ecosystem (following Buol et al., 1997). This relationship is more simply described as “internal soil-forming processes” driven by “external soil-forming factors” (fig. 3.1; after Buol et al., 1984). A useful approach to categorizing the many and varied internal soil-forming processes responsible for pedogenesis is the multiple-process model of Simonson (1959, 1978).

Author(s):  
Vance T. Holliday

The influence of time on soil formation is a unique characteristic of pedogenesis among geomorphic processes that, like lateral variability, serves to distinguish soils and soil-forming processes from other geomorphic phenomena. Another unique aspect of time is that, among the five factors of soil formation, it does not contribute directly to soil formation. However, the passage of time allows the various pedogenic processes operating at a given location to alter the parent material and produce a soil. The physical, chemical, and biological processes of soil formation generally are much slower than many, if not most, processes of sedimentation and erosion. Moreover, most soil-forming processes are so slow that their effect on the soil is markedly time dependent (Birkeland, 1999, p. 144). Time as a factor of soil formation is a key concept in soil geomorphology and has driven much soil geomorphic research (Yaalon, 1975, 1983; Knuepfer and McFadden, 1990; Birkeland, 1999). Because time is also a key consideration of much archaeological research, the time-factor concept of soil genesis can likewise play a significant role in geoarchaeological research (Holliday, 1990a, 1992a). The concept that some time must elapse before a soil can form is arguably one of the most significant aspects of soil development in an archaeological context. This chapter is a discussion of some approaches to the issue of time in archaeology, using soils. The first section is a look at the archaeological implications of soils as indicators of stable landscapes and stratigraphic discontinuities. A number of case histories are presented. The validity of intersite and intrasite archaeological correlations using soils and interpretations of archaeological assemblages associated with soils are profoundly dependent on recognition of soils as depositional hiatuses. The subsequent section reviews the concept of the soil chronosequence and its use in archaeological dating. This is one of the most widely applied aspects of Jenny’s state factor approach to soil geomorphology, and it has considerable potential in archaeology. The last part of the chapter is a discussion of the radiometric dating of pedogenic features.


Author(s):  
Vance T. Holliday

One of the earliest uses of soils in archaeological research, in addition to stratigraphic markers, was as paleoenvironmental indicators. Similar to soil stratigraphy, the use of soils as environmental indicators in archaeological research probably has its roots in Quaternary geology (e.g., Leighton, 1937; Bryan, 1941a, 1948; Bryan and Albritton, 1943; Movius, 1944; Ruhe, 1965; Haynes, 1968; Valentine and Dalrymple, 1976). Quaternary geologists and geomorphologists working with archaeologists were quick to use soils as clues to past environments (e.g., Leighton, 1936; Antevs, 1941; Bryan, 1941a; Hopkins and Giddings, 1953; Haynes, 1968). Likewise, the nature of prehistoric environments has long been a fundamental question in archaeology. Recognition of the relationship of soil development and morphology to environmental conditions goes back to the beginning of modern pedology, in the later 19th century in Russia and in the early 20th century in the United States (Thorp, 1941, 1949; Tandarich and Sprecher, 1994; Johnson and Hole, 1994). Climate and vegetation in particular were understood as important soil-forming factors long before Jenny produced his landmark volume on Factors of Soil Formation (1941). What Jenny (1941, 1980) brought to the discussion was a theoretical means, using the state factor approach, of assessing the effect of vegetation and climate on soils. By understanding these relationships via biosequences or climosequences, we are theoretically able to pick out the morphological and chemical characteristics of soils that are linked to climate or to vegetation. Climate most directly influences pedogenesis through precipitation and temperature and influences pedogenesis indirectly through vegetation. The most direct effects of biota probably come from the addition of a wide range of chemical compounds, from bioturbation, and from rooting. This chapter is a discussion of those characteristics of soils that have some utility for environmental reconstructions, including climate and vegetation estimates. The chapter also includes some discussion of the potential pitfalls in using soils as paleoenvironmental indicators. Longer and more in-depth discussions of soil–environment relationships in the context of soil geomorphology or environmental reconstruction are presented by Birkeland (1999, pp. 268–306) and chapters in Wilding et al. (1983b) and Martini and Chesworth (1992, pp. 155–306).


Author(s):  
Vance T. Holliday

Soils, invaluable indicators of the nature and history of the physical and human landscape, have strongly influenced the cultural record left to archaeologists. Not only are they primary reservoirs for artifacts, they often encase entire sites. And soil-forming processes in themselves are an important component of site formation, influencing which artifacts, features, and environmental indicators (floral, faunal, and geological) will be destroyed and to what extent and which will be preserved and how well. In this book, Holliday will address each of these issues in terms of fundamentals as well as in field case histories from all over the world. The focus will be on principles of soil geomorphology , soil stratigraphy, and soil chemistry and their applications in archaeological research.


Geosciences ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 323
Author(s):  
Galina Vorobieva ◽  
Nadezhda Vashukevich ◽  
Natalia Berdnikova ◽  
Ivan Berdnikov ◽  
Dmitry Zolotarev ◽  
...  

The time of Sartan glaciation in the Baikal–Yenisei Siberia, is comparable with that of MIS 2 and the deglaciation phase MIS 1. Loess loams, aeolian–colluvial sands and sandy loams represent subaerial sediments. There are four subhorizons (sr1, sr2, sr3 and sr4) in the Sartan horizon (sr). Sedimentary and soil-forming processes at different stratigraphic levels are considered. Differing soil formation types of cold periods are distinguished. Soils of the interstadial type with the A-C profile are represented only in the Early Sartan section of this paper. The soils of the pleniglacial type are discussed throughout the section. Their initial profile is O-C, TJ-C and W-C. Plant detritus remnants or poor thin humus horizons are preserved in places from the upper horizons. We propose for the first time for the interphasial soil formation type of cold stages to be distinguished. This is represented in the sections by the preserved BCm, BCg, Cm and Cg horizons of 15–20 cm thick. The upper horizons are absent in most sections. According to the surviving fragments, these were organogenous (O, TJ and T) and organomineral (AO and W) horizons. The sedimentation and soil formation features are considered from the perspective reconstruction of the Sartan natural and climatic conditions. Buried Sartan soils often contain cultural layers. Soil formation shows a well-defined periodicity of natural condition stabilization, which allowed ancient populations to adapt actively to various situations. Archaeologists’ interest in fossil soils is based on the ability of soils to “record” information about the natural and climatic conditions of human habitation.


1981 ◽  
Vol 4 (2) ◽  
pp. 225-235 ◽  
Author(s):  
H. C. Plotkin ◽  
F. J. Odling-Smee

AbstractThe fundamental tenet of contemporary sociobiology, namely the assumption of a single process of evolution involving the selection of genes, is critically examined. An alternative multiple-level, multiple-process model of evolution is presented which posits that the primary process that operates via selection upon the genes cannot account for certain kinds of biological phenomena, especially complex, learned, social behaviours. The primary process has evolved subsidiary evolutionary levels and processes that act to bridge the gap between genes and these complex behaviours. The subsidiary levels are development, individual animal learning, and socioculture itself. It is argued that individual learning is pivotal to the derivation and biological analysis of culture. The differences between cultural and noncultural societies are stressed. It is concluded that such a multiple-level model of evolution can form the basis for reconciling opposing sides in the sociobiology debate.


2018 ◽  
Vol 8 (2) ◽  
pp. 260-274 ◽  
Author(s):  
Vyacheslav Polyakov ◽  
Ksenia Orlova ◽  
Evgeny Abakumov

This article provides data on the study of pedodiversity and pecularities of soils and their spatial distribution in the territory of the Lena River Delta (Siberia, Russia). Special reference to geogenic factors of soil formation in the pedoenvironment are made. The main patterns of soil distribution in different geomorphic positions for Samoilovsky, Arga-Belir-Aryta, Kurungnakh and Hardang islands are discussed. The soil catenas of the 4 investigated islands are given as a reliable representation of the formation of soils and the development of soil-forming processes in various types of relief and geomorphological features. Soils are represented mainly by the following groups: Fluvisols, Umbrisols, Podzols, Cryosols, Histosols, Gleysols, which are closely related to the geomorphic terraces of the delta.


2014 ◽  
Author(s):  
Peter L. Ralph ◽  
Graham Coop

The extent to which populations experiencing shared selective pressures adapt through a shared genetic response is relevant to many questions in evolutionary biology. In a number of well studied traits and species, it appears that convergent evolution within species is common. In this paper, we explore how standing, genetic variation contributes to convergent genetic responses in a geographically spread population, extending our previous work on the topic. Geographically limited dispersal slows the spread of each selected allele, hence allowing other alleles – newly arisen mutants or present as standing variation – to spread before any one comes to dominate the population. When such alleles meet, their progress is substantially slowed – if the alleles are selectively equivalent, they mix slowly, dividing the species range into a random tessellation, which can be well understood by analogy to a Poisson process model of crystallization. In this framework, we derive the geographic scale over which a typical allele is expected to dominate, the time it takes the species to adapt as a whole, and the proportion of adaptive alleles that arise from standing variation. Finally, we explore how negative pleiotropic effects of alleles before an environment change can bias the subset of alleles that contribute to the species' adaptive response. We apply the results to the many geographically localized G6PD deficiency alleles thought to confer resistance to malaria, where the large mutational target size makes it a likely candidate for adaptation from standing variation, despite the selective cost of G6PD deficiency alleles in the absence of malaria. We find the numbers and geographic spread of these alleles matches our predictions reasonably well, consistent with the view that they arose from a combination of standing variation and new mutations since the advent of malaria. Our results suggest that much of adaptation may be geographically local even when selection pressures are homogeneous. Therefore, we argue that caution must be exercised when arguing that strongly geographically restricted alleles are necessarily the outcome of local adaptation. We close by discussing the implications of these results for ideas of species coherence and the nature of divergence between species.


Author(s):  
Vance T. Holliday

Pedogenic processes that produce or alter the soils associated with a landscape (buried or unburied) also modify the archaeological sites and other traces of human activity associated with that landscape and buried landscapes. The wide range of processes that form soils can profoundly affect the archaeological record. Pedogenesis, therefore, is an important component of the processes of archaeological site formation. Archaeological “site-formation processes” are those processes that modify artifacts and archaeological sites from the moment they were formed until they are uncovered by archaeologists (Stein, 2001b, pp. 37–38). Understanding formation processes is crucial in archaeology because archaeologists use the patterns of artifacts in the ground to infer behaviors. Formation processes identify patterns that are created by ancient behaviors and separate those patterns from the ones created by later cultural and natural processes (Stein, 2001b, p. 37). In his influential volume Formation Processes of the Archaeological Record, Schiffer (1987, p. 7) notes that archaeologists try to infer past behavior based on the archaeological record, but the record “must be handled with great care by the investigator seeking to infer past behaviors, for the evidence that survives has been changed in many ways by a variety of processes.” These processes introduce variability and ambiguity into the archaeological record. Schiffer (1987, p. 7) further distinguishes between cultural processes, in which the agency of transformation is human behavior, and noncultural processes, which stem from processes of the natural environment. Natural formation processes are many and varied and include plants, animals, wind, water, ice, and gravity, among others. Soil formation is also identified as an important process of site formation. Schiffer (1987) provides a comprehensive discussion of natural site-formation processes, which are summarized by Stein (2001b). Nash and Petraglia (1987) and Goldberg et al. (1993) also provide a number of case histories of natural formation processes identified at archaeological sites. Because soil formation represents the alteration of rock and sediment (chapter 1), pedogenic processes are important natural processes in the formation of archaeological sites. Other weathering processes that are significant in site formation can be grouped as “diagenetic alterations.”


Author(s):  
Vincent Brunner ◽  
Manuel Siegl ◽  
Dominik Geier ◽  
Thomas Becker

Among the greatest challenges in soft sensor development for bioprocesses are variable process lengths, multiple process phases, and erroneous model inputs due to sensor faults. This review article describes these three challenges and critically discusses the corresponding solution approaches from a data scientist’s perspective. This main part of the article is preceded by an overview of the status quo in the development and application of soft sensors. The scope of this article is mainly the upstream part of bioprocesses, although the solution approaches are in most cases also applicable to the downstream part. Variable process lengths are accounted for by data synchronization techniques such as indicator variables, curve registration, and dynamic time warping. Multiple process phases are partitioned by trajectory or correlation-based phase detection, enabling phase-adaptive modeling. Sensor faults are detected by symptom signals, pattern recognition, or by changing contributions of the corresponding sensor to a process model. According to the current state of the literature, tolerance to sensor faults remains the greatest challenge in soft sensor development, especially in the presence of variable process lengths and multiple process phases.


Sign in / Sign up

Export Citation Format

Share Document