IRREVERSIBILITY IN RELATIVISTIC STATISTICAL MECHANICS

1994 ◽  
Vol 08 (29) ◽  
pp. 1847-1860 ◽  
Author(s):  
URI BEN-YA’ACOV

Relativistic statistical mechanics should be manifestly Lorentz covariant. In the absence of a Hamiltonian formalism in relativistic dynamics, a different approach which is based on the (Lagrangian) equations of motion is presented. Without any Liouville equation, this approach provides the direct computation of all the reduced n-particle distribution functions. The trajectories in the fully interacting system and ensemble averages are defined with respect to the parameters that fix the trajectories in the interaction-free limit. Irreversibility may emerge from microscopic dynamics due to the choice as to which part of the particles’ history — past or future — contributes to the interaction. Irreversibility is explicitly demonstrated in the evolution of the one-particle distribution function.

1976 ◽  
Vol 16 (3) ◽  
pp. 289-297 ◽  
Author(s):  
G. Vasu

The problem of transport coefficients in statistical mechanics is reconsidered. A general method is given by which the hydrodynamical equations can straightforwardly obtained starting from the kinetic equation for the one-particle distribution function. From the statistical counterparts of the hydrodynamical equations so derived, the statistical expressions for the transport coefficients are immediately identified.Linearized hydrodynamic modes have recently been the object of very thorough reserach from the viewpoint of irreversible statistical mechanics; in particular, the Brussels school formalism has been used by Résibois to derive the eigenfrequencies of the hydrodynamical modes, whereby operatorial equations for transport coefficients have been obtained (Résibois 1970; see also the instructive book by Balescu (1975) on this subject).


1971 ◽  
Vol 10 ◽  
pp. 56-72
Author(s):  
George B. Rybicki

AbstractThe statistical mechanics of an isolated self-gravitating system consisting of N uniform mass sheets is considered using both canonical and microcanonical ensembles. The one-particle distribution function is found in closed form. The limit for large numbers of sheets with fixed total mass and energy is taken and is shown to yield the isothermal solution of the Vlasov equation. The order of magnitude of the approach to Vlasov theory is found to be 0(1/N). Numerical results for spatial density and velocity distributions are given.


Author(s):  
Nathalie Deruelle ◽  
Jean-Philippe Uzan

This chapter covers the equations governing the evolution of particle distribution and relates the macroscopic thermodynamical quantities to the distribution function. The motion of N particles is governed by 6N equations of motion of first order in time, written in either Hamiltonian form or in terms of Poisson brackets. Thus, as this chapter shows, as the number of particles grows it becomes necessary to resort to a statistical description. The chapter first introduces the Liouville equation, which states the conservation of the probability density, before turning to the Boltzmann–Vlasov equation. Finally, it discusses the Jeans equations, which are the equations obtained by taking various averages over velocities.


1998 ◽  
Vol 53 (12) ◽  
pp. 963-976
Author(s):  
A. Kapanowski ◽  
K. Sokalski

Abstract Microscopic expressions for the elastic constants of binary liquid crystalline mixtures composed of short rigid uniaxial molecules are derived in the thermodynamic limit at small distorsions and a small density. Uniaxial and biaxial nematic phases are considered. The expressions involve the one-particle distribution functions and the potential energy of two-body short-range interactions. The theory is used to calculate the phase diagram of a mixture of rigid prolate and oblate molecules. The concentration dependence of the order parameters and the elastic constants are obtained. The possibility of phase separation is not investigated.


2007 ◽  
Vol 73 (2) ◽  
pp. 207-214 ◽  
Author(s):  
R. P. SINGHAL ◽  
A. K. TRIPATHI

Abstract.The components of the dielectric tensor for the distribution function given by Leubner and Schupfer have been obtained. The effect of the loss-cone index appearing in the particle distribution function in a hot magnetized plasma has been studied. A case study has been performed to calculate temporal growth rates of Bernstein waves using the distribution function given by Summers and Thorne and Leubner and Schupfer. The effect of the loss-cone index on growth rates is found to be quite different for the two distribution functions.


1982 ◽  
Vol 27 (1) ◽  
pp. 135-148 ◽  
Author(s):  
A. J. M. Garrett

This paper is concerned with the Boltzmann collision integral for the one-particle distribution function of a test species of particle undergoing elastic collisions with particles of a second species which is in thermal equilibrium. This expression is studied as a function of the ratio of the masses of the test and host particles for the case when the test particle distribution function is isotropic in velocity space. The analysis can also be considered as referring to the zeroth-order spherical harmonic in velocity space of a general velocity distribution function. The resulting collision term, due originally to Davydov, is of Fokker–Planck form and effectively describes a diffusion in energy. The method of derivation employed here is more systematic than hitherto, and is used to calculate the first correction to the Davydov term. Differences between classical and quantum cross-sections are considered; the correction to the Davydov term is checked by means of a comparison with the exact solution of the associated eigenvalue problem for the special case of Maxwell interactions treated classically.


2021 ◽  
pp. 1-16
Author(s):  
Anton Valerievich Ivanov

The system of equations for correlation magnetodynamics (CMD) is based on the Bogolyubov chain and approximation of the two-particle distribution function taking into account the correlations between the nearest neighbors. CMD provides good agreement with atom-for-atom simulation results (which are considered ab initio), but there is some discrepancy in the phase transition region. To solve this problem, a new system of CMD equations is constructed, which takes into account the quadratic correction in the approximation of the one-particle distribution function. The system can be simplified in a uniaxial case.


Sign in / Sign up

Export Citation Format

Share Document