Long-term time series of ornithological data

Author(s):  
Anders Pape Møller ◽  
Wesley M. Hochachka

There are numerous sources of data relevant for studies of the effects of climate change. Here we provide a classification of such data and their advantages and drawbacks. Long-term data can be classified into data from long-term population studies, nest record schemes, bird surveys, breeding and winter atlases, bird ringing information, bird ringing stations, bird observation depositories, and museum collections. Such data differ enormously in quality, but also in their usefulness. They range from long-term population studies of individually banded birds that can be used for genetic, evolution, and ecology studies to studies of presence/absence data. There are relatively few individual-based population studies while databases of records of individuals are much more abundant, albeit still useful for many purposes. Different databases also vary consistently in data quality, and there is scope for methodological studies and comparative analyses of multiple data bases.

Author(s):  
Ye Yuan ◽  
Stefan Härer ◽  
Tobias Ottenheym ◽  
Gourav Misra ◽  
Alissa Lüpke ◽  
...  

AbstractPhenology serves as a major indicator of ongoing climate change. Long-term phenological observations are critically important for tracking and communicating these changes. The phenological observation network across Germany is operated by the National Meteorological Service with a major contribution from volunteering activities. However, the number of observers has strongly decreased for the last decades, possibly resulting in increasing uncertainties when extracting reliable phenological information from map interpolation. We studied uncertainties in interpolated maps from decreasing phenological records, by comparing long-term trends based on grid-based interpolated and station-wise observed time series, as well as their correlations with temperature. Interpolated maps in spring were characterized by the largest spatial variabilities across Bavaria, Germany, with respective lowest interpolated uncertainties. Long-term phenological trends for both interpolations and observations exhibited mean advances of −0.2 to −0.3 days year−1 for spring and summer, while late autumn and winter showed a delay of around 0.1 days year−1. Throughout the year, temperature sensitivities were consistently stronger for interpolated time series than observations. Such a better representation of regional phenology by interpolation was equally supported by satellite-derived phenological indices. Nevertheless, simulation of observer numbers indicated that a decline to less than 40% leads to a strong decrease in interpolation accuracy. To better understand the risk of declining phenological observations and to motivate volunteer observers, a Shiny app is proposed to visualize spatial and temporal phenological patterns across Bavaria and their links to climate change–induced temperature changes.


2018 ◽  
Author(s):  
Athanasia Iona ◽  
Athanasios Theodorou ◽  
Sarantis Sofianos ◽  
Sylvain Watelet ◽  
Charles Troupin ◽  
...  

Abstract. We present a new product composed of a set of thermohaline climatic indices from 1950 to 2015 for the Mediterranean Sea such as decadal temperature and salinity anomalies, their mean values over selected depths, decadal ocean heat and salt content anomalies at selected depth layers as well as their long times series. It is produced from a new high-resolution climatology of temperature and salinity on a 1/8° regular grid based on historical high quality in situ observations. Ocean heat and salt content differences between 1980–2015 and 1950–1979 are compared for evaluation of the climate shift in the Mediterranean Sea. The spatial patterns of heat and salt content shifts demonstrate in greater detail than ever before that the climate changes differently in the several regions of the basin. Long time series of heat and salt content for the period 1950 to 2015 are also provided which indicate that in the Mediterranean Sea there is a net mean volume warming and salting since 1950 with acceleration during the last two decades. The time series also show that the ocean heat content seems to fluctuate on a cycle of about 40 years and seems to follow the Atlantic Multidecadal Oscillation climate cycle indicating that the natural large scale atmospheric variability could be superimposed on to the warming trend. This product is an observations-based estimation of the Mediterranean climatic indices. It relies solely on spatially interpolated data produced from in-situ observations averaged over decades in order to smooth the decadal variability and reveal the long term trends with more accuracy. It can provide a valuable contribution to the modellers' community, next to the satellite-based products and serve as a baseline for the evaluation of climate-change model simulations contributing thus to a better understanding of the complex response of the Mediterranean Sea to the ongoing global climate change. The product is available here: https://doi.org/10.5281/zenodo.1210100.


2015 ◽  
Vol 12 (6) ◽  
pp. 5219-5250 ◽  
Author(s):  
A. Molina ◽  
V. Vanacker ◽  
E. Brisson ◽  
D. Mora ◽  
V. Balthazar

Abstract. Andean headwater catchments play a pivotal role to supply fresh water for downstream water users. However, few long-term studies exist on the relative importance of climate change and direct anthropogenic perturbations on flow regimes. In this paper, we assess multi-decadal change in freshwater provision based on long time series (1974–2008) of hydrometeorological data and land cover reconstructions for a 282 km2 catchment located in the tropical Andes. Three main land cover change trajectories can be distinguished: (1) rapid decline of native vegetation in montane forest and páramo ecosystems in ~1/5 or 20% of the catchment area, (2) expansion of agricultural land by 14% of the catchment area, (3) afforestation of 12% of native páramo grasslands with exotic tree species in recent years. Given the strong temporal variability of precipitation and streamflow data related to El Niño–Southern Oscillation, we use empirical mode decomposition techniques to detrend the time series. The long-term increasing trend in rainfall is remarkably different from the observed changes in streamflow that exhibit a decreasing trend. Hence, observed changes in streamflow are not the result of long-term climate change but very likely result from direct anthropogenic disturbances after land cover change. Partial water budgets for montane cloud forest and páramo ecosystems suggest that the strongest changes in evaporative water losses are observed in páramo ecosystems, where progressive colonization and afforestation of high alpine grasslands leads to a strong increase in transpiration losses.


Biologia ◽  
2006 ◽  
Vol 61 (5) ◽  
Author(s):  
Zdravko Dolenec

AbstractIncreasing evidence suggests that climate change affects bird breeding phenology and other life-history traits of wildlife. This study is based on the mean spring temperatures (February, March, April) and laying dates of first eggs of the marsh tit Parus palustris. We collected data from 1984 to 2004 for the Mokrice area in NW Croatia. Correlation between laying date and mean spring temperatures was significant. The relationship between mean laying date (y) and air temperature (x) can be expressed as y = 44.69 − 2.08x. Results indicate that spring temperatures are a good predictor of timing of laying eggs. Such long-term data could than be used in order to assess the effects on biological systems if human activities influence climate.


2021 ◽  
Author(s):  
Thibault Mathevet ◽  
Cyril Thébault ◽  
Jérôme Mansons ◽  
Matthieu Le Lay ◽  
Audrey Valery ◽  
...  

<p>The aim of this communication is to present a study on climate variability and change on snow water equivalent (SWE) and streamflow over the 1900-2100 period in a mediteranean and moutainuous area.  It is based on SWE and streamflow observations, past reconstructions (1900-2018) and future GIEC scenarii (up to 2100) of some snow courses and hydrological stations situated within the French Southern Alps (Mercantour Natural Parc). This has been conducted by EDF (French hydropower company) and Mercantour Natural Parc.</p><p>This issue became particularly important since a decade, especially in regions where snow variability had a large impact on water resources availability, poor snow conditions in ski resorts and artificial snow production or impacts on mountainous ecosystems (fauna and flora). As a water resources manager in French mountainuous regions, EDF developed and managed a large hydrometeorological network since 1950. A recent data rescue research allowed to digitize long term SWE manual measurements of a hundred of snow courses within the French Alps. EDF have been operating an automatic SWE sensors network, complementary to historical snow course network. Based on numerous SWE observations time-series and snow modelization (Garavaglia et al., 2017), continuous daily historical SWE time-series have been reconstructed within the 1950-2018 period. These reconstructions have been extented to 1900 using 20 CR (20<sup>th</sup> century reanalyses by NOAA) reanalyses (ANATEM method, Kuentz et al., 2015) and up to 2100 using GIEC Climate Change scenarii (+4.5 W/m² and + 8.5 W/m² hypotheses). In the scope of this study, Mercantour Natural Parc is particularly interested by snow scenarii in the future and its impacts on their local flora and fauna.</p><p>Considering observations within Durance watershed and Mercantour region, this communication focuses on: (1) long term (1900-2018) analyses of variability and trend of hydrometeorological and snow variables (total precipitation, air temperature, snow water equivalent, snow line altitude, snow season length, streamflow regimes) , (2) long term variability of snow and hydrological regime of snow dominated watersheds and (3) future trends (2020 -2100) using GIEC Climate Change scenarii.</p><p>Comparing old period (1950-1984) to recent period (1984-2018), quantitative results within these regions roughly shows an increase of air temperature by 1.2 °C, an increase of snow line height by 200m, a reduction of SWE by 200 mm/year and a reduction of snow season duration by 15 days. Characterization of the increase of snow line height and SWE reduction are particularly important at a local and watershed scale. Then, this communication focuses on impacts on long-term time scales (2050, 2100). This long term change of snow dynamics within moutainuous regions both impacts (1) water resources management, (2) snow resorts and artificial snow production developments or (3) ecosystems dynamics.Connected to the evolution of snow seasonality, the impacts on hydrological regime and some streamflow signatures allow to characterize the possible evolution of water resources in this mediteranean and moutianuous region This study allowed to provide some local quantitative scenarii.</p>


2018 ◽  
Vol 10 (6) ◽  
pp. 940 ◽  
Author(s):  
José García-Lázaro ◽  
José Moreno-Ruiz ◽  
David Riaño ◽  
Manuel Arbelo

2019 ◽  
Vol 14 (02) ◽  
pp. 1
Author(s):  
Jean-Philippe Denux ◽  
Emmanuelle Cano ◽  
Laurence Hubert-Moy ◽  
Marie Parrens ◽  
Véronique Chéret

Author(s):  
Sezer Kahyaoglu Bozkus ◽  
Hakan Kahyaoglu ◽  
Atahirou Mahamane Mahamane Lawali

Purpose The purpose of this study aims to analyze the dynamic behavior of the relationship between atmospheric carbon emissions and the Organisation for Economic Co-operation and Development (OECD) industrial production index (IPI) in the short and long term by applying multifractal techniques. Design/methodology/approach Multifractal de-trended cross-correlation technique is used for this analysis based on the relevant literature. In addition, it is the most widely used approach to estimate multifractality because it generates robust empirical results against non-stationarities in the time series. Findings It is revealed that industrial production causes long and short term environmental costs. The OECD IPI and atmospheric carbon emissions were found to have a strong correlation between the time domain. However, this relationship does not mostly take into account the frequency-based correlations with the tail effects caused by shocks that are effective on the economy. In this study, the long-term dependence of the relationship between the OECD IPI and atmospheric carbon emissions differs from the correlation obtained by linear methods, as the analysis is based on the frequency. The major finding is that the Hurst coefficient is in the range 0.40-0.75 indicating. Research limitations/implications In this study, the local singular behavior of the time-series is analyzed to test for the multifractality characteristics of the series. In this context, the scaling exponents and the singularity spectrum are obtained to determine the origins of this multifractality. The multifractal time series are defined as the set of points with a given singularity exponent a where this exponent a is illustrated as a fractal with fractal dimension f(α). Therefore, the multifractality term indicates the existence of fluctuations, which are non-uniform and more importantly, their relative frequencies are also scale-dependent. Practical implications The results provide information based on the fluctuation in IPI, which determines the main conjuncture of the economy. An optimal strategy for shaping the consequences of climate change resulting from industrial production activities will not only need to be quite comprehensive and global in scale but also policies will need to be applicable to the national and local conditions of the given nation and adaptable to the needs of the country. Social implications The results provide information for the analysis of the environmental cost of climate change depending on the magnitude of the impact on the total supply. In addition to environmental problems, climate change leads to economic problems, and hence, policy instruments are introduced to fight against the adverse effects of it. Originality/value This study may be of practical and technical importance in regional climate change forecasting, extreme carbon emission regulations and industrial production resource management in the world economy. Hence, the major contribution of this study is to introduce an approach to sustainability for the analysis of the environmental cost of growth in the supply side economy.


Science ◽  
2020 ◽  
Vol 367 (6478) ◽  
pp. 685-688 ◽  
Author(s):  
Peter Soroye ◽  
Tim Newbold ◽  
Jeremy Kerr

Climate change could increase species’ extinction risk as temperatures and precipitation begin to exceed species’ historically observed tolerances. Using long-term data for 66 bumble bee species across North America and Europe, we tested whether this mechanism altered likelihoods of bumble bee species’ extinction or colonization. Increasing frequency of hotter temperatures predicts species’ local extinction risk, chances of colonizing a new area, and changing species richness. Effects are independent of changing land uses. The method developed in this study permits spatially explicit predictions of climate change–related population extinction-colonization dynamics within species that explains observed patterns of geographical range loss and expansion across continents. Increasing frequencies of temperatures that exceed historically observed tolerances help explain widespread bumble bee species decline. This mechanism may also contribute to biodiversity loss more generally.


Sign in / Sign up

Export Citation Format

Share Document