The Whitehead Decomposition

2021 ◽  
pp. 95-102
Author(s):  
Xiaoyi Cui ◽  
Boldizsár Kalmár ◽  
Patrick Orson ◽  
Nathan Sunukjian

‘The Whitehead Decomposition’ introduces this historically significant decomposition. Not only is the quotient of the 3-sphere by the Whitehead decomposition not homeomorphic to the 3-sphere, it is not even a manifold. In order to detect this curious fact, the notion of a noncompact space being simply connected at infinity is introduced. The chapter also describes the Whitehead manifold, which is a contractible 3-manifold not homeomorphic to Euclidean space. While the Whitehead decomposition does not shrink, its product with the real line does, as is proved in this chapter; in other words, the quotient of the 3-sphere by the Whitehead decomposition is a manifold factor. The proof of the disc embedding theorem utilizes Bing–Whitehead decompositions, which may be understood to be a mix between the Whitehead decomposition and the Bing decomposition from a previous chapter. In a subsequent chapter, precisely when Bing–Whitehead decompositions shrink is explained.

1981 ◽  
Vol 82 ◽  
pp. 83-97 ◽  
Author(s):  
Kenichi Shiraiwa ◽  
Masahiro Kurata

In 1975, Li and Yorke [3] found the following fact. Let f: I→ I be a continuous map of the compact interval I of the real line R into itself. If f has a periodic point of minimal period three, then f exhibits chaotic behavior. The above result is generalized by F.R. Marotto [4] in 1978 for the multi-dimensional case as follows. Let f: Rn → Rn be a differentiate map of the n-dimensional Euclidean space Rn (n ≧ 1) into itself. If f has a snap-back repeller, then f exhibits chaotic behavior.In this paper, we give a generalization of the above theorem of Marotto. Our theorem can also be regarded as a generalization of the Smale’s results on the transversal homoclinic point of a diffeomorphism.


2016 ◽  
pp. 3973-3982
Author(s):  
V. R. Lakshmi Gorty

The fractional integrals of Bessel-type Fractional Integrals from left-sided and right-sided integrals of fractional order is established on finite and infinite interval of the real-line, half axis and real axis. The Bessel-type fractional derivatives are also established. The properties of Fractional derivatives and integrals are studied. The fractional derivatives of Bessel-type of fractional order on finite of the real-line are studied by graphical representation. Results are direct output of the computer algebra system coded from MATLAB R2011b.


2000 ◽  
Vol 26 (1) ◽  
pp. 237
Author(s):  
Duszyński
Keyword(s):  

1982 ◽  
Vol 8 (1) ◽  
pp. 67 ◽  
Author(s):  
Thomson
Keyword(s):  

2019 ◽  
Vol 27 (1) ◽  
Author(s):  
Sameh Shenawy

Abstract Let $\mathcal {W}^{n}$ W n be the set of smooth complete simply connected n-dimensional manifolds without conjugate points. The Euclidean space and the hyperbolic space are examples of these manifolds. Let $W\in \mathcal {W}^{n}$ W ∈ W n and let A and B be two convex subsets of W. This note aims to investigate separation and slab horosphere separation of A and B. For example,sufficient conditions on A and B to be separated by a slab of horospheres are obtained. Existence and uniqueness of foot points and farthest points of a convex set A in $W\in \mathcal {W}$ W ∈ W are considered.


2020 ◽  
Vol 27 (2) ◽  
pp. 265-269
Author(s):  
Alexander Kharazishvili

AbstractIt is shown that any function acting from the real line {\mathbb{R}} into itself can be expressed as a pointwise limit of finite sums of periodic functions. At the same time, the real analytic function {x\rightarrow\exp(x^{2})} cannot be represented as a uniform limit of finite sums of periodic functions and, simultaneously, this function is a locally uniform limit of finite sums of periodic functions. The latter fact needs the techniques of Hamel bases.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1060
Author(s):  
Enrico Celeghini ◽  
Manuel Gadella ◽  
Mariano A. del del Olmo

We introduce a multi-parameter family of bases in the Hilbert space L2(R) that are associated to a set of Hermite functions, which also serve as a basis for L2(R). The Hermite functions are eigenfunctions of the Fourier transform, a property that is, in some sense, shared by these “generalized Hermite functions”. The construction of these new bases is grounded on some symmetry properties of the real line under translations, dilations and reflexions as well as certain properties of the Fourier transform. We show how these generalized Hermite functions are transformed under the unitary representations of a series of groups, including the Weyl–Heisenberg group and some of their extensions.


Sign in / Sign up

Export Citation Format

Share Document