Albert Michelson and the Aether Wind

Lightspeed ◽  
2019 ◽  
pp. 112-143
Author(s):  
John C. H. Spence

The life of the gifted American scientist who devoted his life to detection of the Aether wind which the Earth should be moving through, and to the measurement of the speed of light. The struggle to understand how light could propagate through a complete vacuum. Michelson’s invention of his interferometer. Michelson’s great experiment at Case University showing that the speed of light is the same in all directions, independent of the Earth’s velocity. His communication with Maxwell, Kevin, and Rayleigh, and sense of failure over his inability to detect the Aether wind or to locate the Aether as an absolute frame of reference. The Aether drag theories and their tests. Rayleigh’s work on the difference between phase and group velocity. Heaviside’s life and work. Fitzgerald, Einstein, Lorentz, and Michelson.

Lightspeed ◽  
2019 ◽  
pp. 144-158
Author(s):  
John C. H. Spence

The confused state of theoretical physics in 1900 and the great unresolved issues are summarized, one of which led to the birth of quantum mechanics, and the other to relativity. How it seemed impossible to reconcile Bradley’s measurements of the speed of light with Fresnel’s Aether drag hypothesis, which was well supported by Fizeau’s measurements in Paris of the speed of light in a moving medium (flowing water). Maxwell’s equations predicted a constant speed of light, suggesting an absolute frame of reference in the universe, but did not “transform” in the same way as Newton’s equations from one moving observer to another. How Einstein made sense of all these rival theories and experimental results with his unifying theory of relativity, based on two assumptions. His life and work is discussed, and a simple explanation given of his relativity theory. How the failure of this search for an absolute frame of reference in our universe led him inexorably to perhaps the most famous equation in physics E = mc2, giving the energy release from nuclear explosions and the stars.


Author(s):  
John C. H. Spence

This book tells the human story of one of mankind’s greatest intellectual adventures—how we understood that light travels at a finite speed, so that when we look up at the stars we are looking back in time. And how the search for an absolute frame of reference in the universe led inexorably to Einstein’s famous equation E = mc2 for the energy released by nuclear weapons which also powers our sun and the stars. From the ancient Greeks measuring the distance to the Sun, to today’s satellite navigation and Einstein’s theories, the book takes the reader on a gripping historical journey. How Galileo with his telescope discovered the moons of Jupiter and used their eclipses as a global clock, allowing travellers to find their longitude. How Roemer, noticing that the eclipses were sometimes late, used this delay to obtain the first measurement of the speed of light, which takes eight minutes to get to us from the Sun. From the international collaborations to observe the transits of Venus, including Cook’s voyage to Australia, to the extraordinary achievements of Young and Fresnel, whose discoveries eventually taught us that light travels as a wave but arrives as a particle, and the quantum weirdness which follows. In the nineteenth century we find Faraday and Maxwell, struggling to understand how light can propagate through the vacuum of space unless it is filled with a ghostly vortex Aether foam. We follow the brilliantly gifted experimentalists Hertz, discoverer of radio, Michelson with his search for the Aether wind, and Foucault and Fizeau with their spinning mirrors and lightbeams across the rooftops of Paris. The difficulties of sending messages faster than light, using quantum entanglement, and the reality of the quantum world conclude this saga.


Lightspeed ◽  
2019 ◽  
pp. 1-3
Author(s):  
John C. H. Spence

This book tells the human story of one of mankind’s greatest intellectual adventures - how we understood that light travels at a finite speed, so that when we look up at the stars we are looking back in time. And how the search for an absolute frame of reference in the universe led inexorably to Einstein’s famous equation E = mc2 for the energy released by nuclear weapons, which also powers our sun and the stars. From the ancient Greeks measuring the distance to the sun, to today’s satellite navigation and Einstein’s theories, the book takes the reader on a gripping historical journey. How Galileo with his telescope discovered the moons of Jupiter and used their eclipses as a global clock, allowing travellers to find their Longitude. How Roemer, noticing that the eclipses were sometimes late, used this delay to obtain the first measurement of the speed of light, which takes eight minutes to get to us from the Sun. From the international collaborations to observe the Transits of Venus, including Cook’s voyage to Australia, to the extraordinary achievements of Young and Fresnel, whose discoveries eventually taught us that light travels as a wave but arrives as a particle, and the quantum weirdness which follows. In the nineteenth century we find Faraday and Maxwell, struggling to understand how light can propagate through the vacuum of space unless it is filled with a ghostly vortex Aether foam. We follow the brilliantly gifted experimentalists Hertz, discoverer of radio, Michelson with his search for the Aether wind, and Foucault and Fizeau with their spinning mirrors and lightbeams across the rooftops of Paris, competing to be the first to measure the speed of light on earth. The difficulty of sending messages faster than light using quantum entanglement, and the reality of the quantum world conclude this saga.


1967 ◽  
Vol 57 (5) ◽  
pp. 1047-1061
Author(s):  
John S. Derr

Abstract It is well-known that Rayleigh and Love waves over continental and oceanic structures have different periods (T) for a given order (n). In the present study, this difference is explored over the spectrum for periods greater than 30 sec, and particularly the graver fundamental spheroidal and torsional oscillations. The oceanic model is the same as the continental model below 400 km depth, is adjusted between 400 km and 10 km to preserve the Earth's overall mass and moment of inertia, and has 5 km of crust and 5 km of ocean. For torsional oscillations, the difference in period for a given n is about 3 sec throughout the range of 2 ≦ n ≦ 120, or 0.15 per cent to 3.3 per cent. However, the two curves for the group velocity are not parallel in this range: continental group velocity increases monotonically with T, while oceanic group velocity has a broad minimum for 160 < T < 200 sec. For spheroidal oscillations, the difference in period for a given n is about 2 sec for 2 ≦ n ≦ 120, or 0.1 per cent to 2 per cent. For n = 0, the difference is only 0.1 sec or 0.008 per cent. The two group velocity curves are almost parallel with minima in the same range, 205 to 210 sec. Comparison with the precision of available measurements of the free periods shows that the presence of an oceanic crust and upper mantle is important for fitting models of the earth to any set of free oscillation observations.


2020 ◽  
Author(s):  
Ninh Khac Son

The manuscript found the formula to calculate the real velocity of the earth and the maximum velocity in the universe, the values of the quantities after calculation as follows:V_earth = 1.852819296∗10^8 m/s.C_max = 4.8507438399∗10^8 m/s.In order to calculate the above results, the manuscript has built a reference frame transformation suitable for all types of motion(suitable for both linear motion and chaotic motion of the reference frame). This means that we will calculate the velocity of an object without using the distance S quantity of the object.


1962 ◽  
Vol 14 ◽  
pp. 149-155 ◽  
Author(s):  
E. L. Ruskol

The difference between average densities of the Moon and Earth was interpreted in the preceding report by Professor H. Urey as indicating a difference in their chemical composition. Therefore, Urey assumes the Moon's formation to have taken place far away from the Earth, under conditions differing substantially from the conditions of Earth's formation. In such a case, the Earth should have captured the Moon. As is admitted by Professor Urey himself, such a capture is a very improbable event. In addition, an assumption that the “lunar” dimensions were representative of protoplanetary bodies in the entire solar system encounters great difficulties.


1998 ◽  
Vol 11 (1) ◽  
pp. 398-398
Author(s):  
Kenji Tanabe

Propagation of the surface waves of the lobe-filing components of close binary systems is investigated theoretically. Such waves are considered to be analogous to the gravity waves of water on the earth. As a result, the equations of the surface wave in the rotating frame of reference are reduced to the so-called Kortewegde Vries (KdV) equation and non-linear Schroedinger (NLS) equation according to its ”depth”. Each of these equations is known to have the solution of soliton. When this soliton is sent to the other component of the binary system through the Lagrangian point, it can give rise to the flare activity observed in some kinds of close binary systems.


1857 ◽  
Vol 8 ◽  
pp. 111-116 ◽  

The Trigonometrical Survey of the United Kingdom commenced in the year 1784, under the immediate auspices of the Royal Society; the first base was traced by General Roy on the 16th of April of that year, on Hounslow Heath, in presence of Sir Joseph Banks, then President of the Society, and some of its most distinguished Fellows. The principal object which the Government had then in view, was the connexion of the Observatories of Paris and Greenwich by means of a triangulation, for the purpose of determining the difference of longitude between the two observatories.


2021 ◽  
Author(s):  
Jean-Philippe Montillet ◽  
Wolfgang Finsterle ◽  
Werner Schmutz ◽  
Margit Haberreiter ◽  
Rok Sikonja

<p><span>Since the late 70’s, successive satellite missions have been monitoring the sun’s activity, recording total solar irradiance observations. These measurements are important to estimate the Earth’s energy imbalance, </span><span>i.e. the difference of energy absorbed and emitted by our planet. Climate modelers need the solar forcing time series in their models in order to study the influence of the Sun on the Earth’s climate. With this amount of TSI data, solar irradiance reconstruction models  can be better validated which can also improve studies looking at past climate reconstructions (e.g., Maunder minimum). V</span><span>arious algorithms have been proposed in the last decade to merge the various TSI measurements over the 40 years of recording period. We have developed a new statistical algorithm based on data fusion.  The stochastic noise processes of the measurements are modeled via a dual kernel including white and coloured noise.  We show our first results and compare it with previous releases (PMOD,ACRIM, ... ). </span></p>


Author(s):  
S. Tiguntsev

In classical physics, time is considered absolute. It is believed that all processes, regardless of their complexity, do not affect the flow of time The theory of relativity determines that the flow of time for bodies depends both on the speed of movement of bodies and on the magnitude of the gravitational potential. It is believed that time in space orbit passes slower due to the high speed of the spacecraft, and faster due to the lower gravitational potential than on the surface of the Earth. Currently, the dependence of time on the magnitude of the gravitational potential and velocity (relativistic effect) is taken into account in global positioning systems. However, studying the relativistic effect, scientists have made a wrong interpretation of the difference between the clock frequency of an orbiting satellite and the clock frequency on the Earth's surface. All further studies to explain the relativistic effect were carried out according to a similar scenario, that is, only the difference in clock frequencies under conditions of different gravitational potentials was investigated. While conducting theoretical research, I found that the frequency of the signal changes along the way from the satellite to the receiver due to the influence of Earth's gravity. It was found that the readings of two high-precision clocks located at different heights will not differ after any period of time, that is, it is shown that the flow of time does not depend on the gravitational potential. It is proposed to conduct full-scale experiments, during which some high-precision clocks are sent aboard the space station, while others remain in the laboratory on the surface of the earth. It is expected that the readings of the satellite clock will be absolutely identical to the readings of the clock in the Earth laboratory.


Sign in / Sign up

Export Citation Format

Share Document