Exercise your imagination, with fractional dimensions

Author(s):  
Susan D'Agostino

“Exercise your imagination, with fractional dimensions” offers a basic introduction to fractional dimensional objects. Unlike a one-dimensional line, a two-dimensional piece of paper, or a three-dimensional box, the dimension of a fractional dimensional object may not be represented by a whole number. The fractional dimensional Koch curve, for example, has approximately 1.26185 dimensions. The discussion is enhanced with numerous hand-drawn sketches providing instruction on how to construct and compute the dimension of the Koch curve. Mathematics students and enthusiasts are encouraged to exercise their imaginations in mathematical and life pursuits as a way of opening themselves up to more of life’s unusual possibilities. At the chapter’s end, readers may check their understanding by working on a problem. A solution is provided.

2019 ◽  
Vol 7 (1) ◽  
pp. 46-54 ◽  
Author(s):  
Л. Жихарев ◽  
L. Zhikharev

Reflection from a certain mirror is one of the main types of transformations in geometry. On a plane a mirror represents a straight line. When reflecting, we obtain an object, each point of which is symmetric with respect to this straight line. In this paper have been considered examples of reflection from a circle – a general case of a straight line, if the latter is defined through a circle of infinite radius. While analyzing a simple reflection and generalization of this process to the cases of such curvature of the mirror, an interesting phenomenon was found – an increase in the reflection dimension by one, that is, under reflection of a one-dimensional object from the circle, a two-dimensional curve is obtained. Thus, under reflection of a point from the circle was obtained the family of Pascal's snails. The main cases, related to reflection from a circular mirror the simplest two-dimensional objects – a segment and a circle at their various arrangement, were also considered. In these examples, the reflections are two-dimensional objects – areas of bizarre shape, bounded by sections of curves – Pascal snails. The most interesting is the reflection of two-dimensional objects on a plane, because the reflection is too informative to fit in the appropriate space. To represent the models of obtained reflections, it was proposed to move into three-dimensional space, and also developed a general algorithm allowing obtain the object reflection from the curved mirror in the space of any dimension. Threedimensional models of the reflections obtained by this algorithm have been presented. This paper reveals the prospects for further research related to transition to three-dimensional space and reflection of objects from a spherical surface (possibility to obtain four-dimensional and five-dimensional reflections), as well as studies of reflections from geometric curves in the plane, and more complex surfaces in space.


2002 ◽  
Vol 12 (4) ◽  
pp. 1044-1052 ◽  
Author(s):  
Amitava Choudhury ◽  
S. Neeraj ◽  
Srinivasan Natarajan ◽  
C. N. R. Rao

2008 ◽  
Vol 62 (1) ◽  
Author(s):  
Peter C. Chu

The Navy’s mine impact burial prediction model creates a time history of a cylindrical or a noncylindrical mine as it falls through air, water, and sediment. The output of the model is the predicted mine trajectory in air and water columns, burial depth/orientation in sediment, as well as height, area, and volume protruding. Model inputs consist of parameters of environment, mine characteristics, and initial release. This paper reviews near three decades’ effort on model development from one to three dimensions: (1) one-dimensional models predict the vertical position of the mine’s center of mass (COM) with the assumption of constant falling angle, (2) two-dimensional models predict the COM position in the (x,z) plane and the rotation around the y-axis, and (3) three-dimensional models predict the COM position in the (x,y,z) space and the rotation around the x-, y-, and z-axes. These models are verified using the data collected from mine impact burial experiments. The one-dimensional model only solves one momentum equation (in the z-direction). It cannot predict the mine trajectory and burial depth well. The two-dimensional model restricts the mine motion in the (x,z) plane (which requires motionless for the environmental fluids) and uses incorrect drag coefficients and inaccurate sediment dynamics. The prediction errors are large in the mine trajectory and burial depth prediction (six to ten times larger than the observed depth in sand bottom of the Monterey Bay). The three-dimensional model predicts the trajectory and burial depth relatively well for cylindrical, near-cylindrical mines, and operational mines such as Manta and Rockan mines.


1976 ◽  
Vol 54 (14) ◽  
pp. 1454-1460 ◽  
Author(s):  
T. Tiedje ◽  
R. R. Haering

The theory of ultrasonic attenuation in metals is extended so that it applies to quasi one and two dimensional electronic systems. It is shown that the attenuation in such systems differs significantly from the well-known results for three dimensional systems. The difference is particularly marked for one dimensional systems, for which the attenuation is shown to be strongly temperature dependent.


Author(s):  
V. Vlasenko ◽  
A. Shiryaeva

New quasi-two-dimensional (2.5D) approach to description of three-dimensional (3D) flows in ducts is proposed. It generalizes quasi-one-dimensional (quasi-1D, 1.5D) theories. Calculations are performed in the (x; y) plane, but variable width of duct in the z direction is taken into account. Derivation of 2.5D approximation equations is given. Tests for verification of 2.5D calculations are proposed. Parametrical 2.5D calculations of flow with hydrogen combustion in an elliptical combustor of a high-speed aircraft, investigated within HEXAFLY-INT international project, are described. Optimal scheme of fuel injection is found and explained. For one regime, 2.5D and 3D calculations are compared. The new approach is recommended for use during preliminary design of combustion chambers.


2003 ◽  
Vol 9 (10) ◽  
pp. 1159-1187 ◽  
Author(s):  
A. Nandi ◽  
S. Neogy

Vibration-based diagnostic methods are used for the detection of the presence of cracks in beams and other structures. To simulate such a beam with an edge crack, it is necessary to model the beam using finite elements. Cracked beam finite elements, being one-dimensional, cannot model the stress field near the crack tip, which is not one-dimensional. The change in neutral axis is also not modeled properly by cracked beam elements. Modeling of such beams using two-dimensional plane elements is a better approximation. The best alternative would be to use three-dimensional solid finite elements. At a sufficient distance away from the crack, the stress field again becomes more or less one-dimensional. Therefore, two-dimensional plane elements or three-dimensional solid elements can be used near the crack and one-dimensional beam elements can be used away from the crack. This considerably reduces the required computational effort. In the present work, such a coupling of dissimilar elements is proposed and the required transition element is formulated. A guideline is proposed for selecting the proper dimensions of the transition element so that accurate results are obtained. Elastic deformation, natural frequency and dynamic response of beams are computed using dissimilar elements. The finite element analysis of cracked rotating shafts is complicated because of the fact that elastic deformations are superposed on the rigid-body motion (rotation about an axis). A combination of three-dimensional solid elements and beam elements in a rotating reference is proposed here to model such rotors.


1999 ◽  
Vol 36 (02) ◽  
pp. 102-112
Author(s):  
Michael D. A. Mackney ◽  
Carl T. F. Ross

Computational studies of hull-superstructure interaction were carried out using one-, two-and three-dimensional finite element analyses. Simplification of the original three-dimensional cases to one- and two-dimensional ones was undertaken to reduce the data preparation and computer solution times in an extensive parametric study. Both the one- and two-dimensional models were evaluated from numerical and experimental studies of the three-dimensional arrangements of hull and superstructure. One-dimensional analysis used a simple beam finite element with appropriately changed sections properties at stations where superstructures existed. Two-dimensional analysis used a four node, first order quadrilateral, isoparametric plane elasticity finite element, with a corresponding increase in the grid domain where the superstructure existed. Changes in the thickness property reflected deck stiffness. This model was essentially a multi-flanged beam with the shear webs representing the hull and superstructure sides, and the flanges representing the decks One-dimensional models consistently and uniformly underestimated the three-dimensional behaviour, but were fast to create and run. Two-dimensional models were also consistent in their assessment, and considerably closer in predicting the actual behaviours. These models took longer to create than the one-dimensional, but ran in very much less time than the refined three-dimensional finite element models Parametric insights were accomplished quickly and effectively with the simplest model and processor, but two-dimensional analyses achieved closer absolute measure of the displacement behaviours. Although only static analysis with simple loading and support conditions were presented, it is believed that similar benefits would be found for other loadings and support conditions. Other engineering components and structures may benefit from similarly judged simplification using one- and two-dimensional models to reduce the time and cost of preliminary design.


Sign in / Sign up

Export Citation Format

Share Document