Evolution of Sociality and Nonlinear Population Dynamics

Author(s):  
Daniel Oro

Sociality appears in many life histories during evolution. Some eusocial bees show evolutionary reversions to solitary behaviour, and populations of the same species can be solitary or social, likely depending on local environmental features. Social species need a minimum size to perform adaptive behaviours, such as the search for resources, which is crucial especially under perturbations. This minimum size may become a threshold, setting a phase transition for separating two stable states, from disorganized and maladaptive to organized and adaptive, which also shows hysteresis. The chapter also explores evolution via facilitation or cooperation (e.g. social information) under the theoretical framework of multilevel selection, by which there is likely an effect of the social group’s genes on individual fitness. Perturbations appear as a strong source of evolutionary processes. In humans, warfare acts as a very powerful selective pressure for competition between groups and thus for cooperation. Sociality has also many costs, such as a higher risk for the spread of infectious disease, the appearance of traps by social haunting philopatry, stronger aggression and competition, and a higher risk of being attacked by predators. Finally, the evolution of cultures is explored; optimization of social learning, social copying, and cultural transmission may have nonlinear consequences for population dynamics.

Ecology ◽  
2011 ◽  
Vol 92 (8) ◽  
pp. 1658-1671 ◽  
Author(s):  
David A. Miller ◽  
William R. Clark ◽  
Stevan J. Arnold ◽  
Anne M. Bronikowski

1985 ◽  
Vol 55 (2) ◽  
pp. 141-166 ◽  
Author(s):  
T. P. Hughes ◽  
J. B. C. Jackson

Author(s):  
Daniel Oro

Throughout the book, I have been searching for empirical examples and theories dealing with how perturbations trigger behavioural feedback responses in social animals, how these responses affect the decision to disperse between patches, and the consequences of dispersal for complex, nonlinear population dynamics. What seems quite clear is that social feedbacks—and especially runaway dispersal by copying—do play an important role in those responses, compared to solitary species. Although philopatry to the patch has many benefits, perturbations may decrease the suitability of this patch. When a patch is perturbed, do social species show different responses than solitary species? Since evolution has selected for maximizing fitness prospects, individuals living either in groups or in solitary will try to avoid the detrimental effects of the perturbation, for instance by leaving the patch. The behavioural mechanisms triggered by perturbations are similar for both social and solitary species: increase of information gathering to reduce uncertainty and the use of this updated information to make optimal decisions about either staying or leaving. Thus, the answer is that solitary and social species show similar responses to perturbations. Nevertheless, the way those behavioural mechanisms operate is rather different between social and solitary species: in the former, information is shared among individuals, and decisions about when to leave the patch and where to go are made not only using private or personal information, but mostly using social information. Last but not least, there is social copying, a trend to copy in a nonrational way what others have decided before. This social copying, also called conformity, may trigger what I termed runaway dispersal: perturbations may accumulate over time, decreasing resilience of the social group until attaining a tipping point. Once this threshold is surpassed, the decision to disperse is led by a few individuals, and this decision is copied by the rest of the group in an autocatalytic way....


2021 ◽  
pp. 329-340
Author(s):  
Anna Kuparinen

Contemporary evolution that occurs across ecologically relevant time scales, such as a few generations or decades, can not only change phenotypes but also feed back to demographic parameters and the dynamics of populations. This chapter presents a method to make phenotypic traits evolve in mechanistic individual-based simulations. The method is broadly applicable, as demonstrated through its applications to boreal forest adaptation to global warming, eco-evolutionary dynamics driven by fishing-induced selection in Atlantic cod, and the evolution of age at maturity in Atlantic salmon. The main message of this chapter is that there may be little reason to exclude phenotypic evolution in analyses of population dynamics, as these can be modified by evolutionary changes in life histories. Future challenges will be to integrate rapidly accumulating genomic knowledge and an ecosystem perspective to improve population projections and to better understand the drivers of population dynamics.


2018 ◽  
Vol 16 (2) ◽  
Author(s):  
César A. Bonilla-Castillo ◽  
Edwin Agudelo Córdoba ◽  
Guber Gómez ◽  
Fabrice Duponchelle

ABSTRACT The black prochilodus (Prochilodus nigricans) is one of the most landed scaled fish species of the middle and upper parts of the Putumayo River, in the tri-national area between Colombia, Ecuador and Peru. Despite its importance, biological information about this species is too scant to guide fisheries management in this portion of the Colombian Amazon. In this study, 10884 individuals were sampled in the fish markets of Puerto Leguízamo between 2009 and 2017. This sampling was used to document reproductive patterns, but also growth and mortality parameters from length frequency distributions. The size at which all fish were mature was 22 cm Ls, which should be the established as the minimum size of capture to ensure that all fish have had a chance to reproduce before being caught. Growth and mortality parameters indicated a slower growth in the Putumayo than in other Amazonian rivers and a relatively high exploitation rate.


2019 ◽  
Vol 286 (1916) ◽  
pp. 20192070 ◽  
Author(s):  
Thomas R. Haaland ◽  
Jonathan Wright ◽  
Irja I. Ratikainen

In order to understand how organisms cope with ongoing changes in environmental variability, it is necessary to consider multiple adaptations to environmental uncertainty on different time scales. Conservative bet-hedging (CBH) represents a long-term genotype-level strategy maximizing lineage geometric mean fitness in stochastic environments by decreasing individual fitness variance, despite also lowering arithmetic mean fitness. Meanwhile, variance-prone (aka risk-prone) strategies produce greater variance in short-term payoffs, because this increases expected arithmetic mean fitness if the relationship between payoffs and fitness is accelerating. Using evolutionary simulation models, we investigate whether selection for such variance-prone strategies is counteracted by selection for bet-hedging that works to adaptively reduce fitness variance. In our model, variance proneness evolves in fine-grained environments (lower correlations among individuals in energetic state and/or payoffs), and with larger numbers of independent decision events over which resources accumulate prior to selection. Conversely, multiplicative fitness accumulation, caused by coarser environmental grain and fewer decision events selection, favours CBH via greater variance aversion. We discuss examples of variance-sensitive strategies in optimal foraging, migration, life histories and cooperative breeding using this bet-hedging perspective. By linking disparate fields of research studying adaptations to variable environments, we should be better able to understand effects of human-induced rapid environmental change.


2015 ◽  
Vol 282 (1799) ◽  
pp. 20141817 ◽  
Author(s):  
Scott L. Hamilton ◽  
Jennifer E. Caselle

Size-structured predator–prey interactions can be altered by the history of exploitation, if that exploitation is itself size-selective. For example, selective harvesting of larger sized predators can release prey populations in cases where only large individuals are capable of consuming a particular prey species. In this study, we examined how the history of exploitation and recovery (inside marine reserves and due to fisheries management) of California sheephead ( Semicossyphus pulcher ) has affected size-structured interactions with sea urchin prey in southern California. We show that fishing changes size structure by reducing sizes and alters life histories of sheephead, while management measures that lessen or remove fishing impacts (e.g. marine reserves, effort restrictions) reverse these effects and result in increases in density, size and biomass. We show that predation on sea urchins is size-dependent, such that the diet of larger sheephead is composed of more and larger sized urchins than the diet of smaller fish. These results have implications for kelp forest resilience, because urchins can overgraze kelp in the absence of top-down control. From surveys in a network of marine reserves, we report negative relationships between the abundance of sheephead and urchins and the abundance of urchins and fleshy macroalgae (including giant kelp), indicating the potential for cascading indirect positive effects of top predators on the abundance of primary producers. Management measures such as increased minimum size limits and marine reserves may serve to restore historical trophic roles of key predators and thereby enhance the resilience of marine ecosystems.


Sign in / Sign up

Export Citation Format

Share Document