A New Look at Quine on Set Theory

Author(s):  
Marianna Antonutti Marfori
Keyword(s):  

This chapter first argues that while there are solid objections to be raised to Quine’s view, certain widespread arguments against result from overly crude and uncharitable interpretations of Quine. It then turns to the question of what kind of evidence it would take for a Quinean naturalist to change their mind about certain theses, such as the size of the set theoretic universe. It argues that Quineans might be moved to embrace further set-theoretic ontology in the light of the mathematical utility of large cardinals, and potentially even the ‘multiverse’ position on set theory.

1996 ◽  
Vol 2 (1) ◽  
pp. 94-107 ◽  
Author(s):  
Greg Hjorth

§0. Preface. There has been an expectation that the endgame of the more tenacious problems raised by the Los Angeles ‘cabal’ school of descriptive set theory in the 1970's should ultimately be played out with the use of inner model theory. Questions phrased in the language of descriptive set theory, where both the conclusions and the assumptions are couched in terms that only mention simply definable sets of reals, and which have proved resistant to purely descriptive set theoretic arguments, may at last find their solution through the connection between determinacy and large cardinals.Perhaps the most striking example was given by [24], where the core model theory was used to analyze the structure of HOD and then show that all regular cardinals below ΘL(ℝ) are measurable. John Steel's analysis also settled a number of structural questions regarding HODL(ℝ), such as GCH.Another illustration is provided by [21]. There an application of large cardinals and inner model theory is used to generalize the Harrington-Martin theorem that determinacy implies )determinacy.However, it is harder to find examples of theorems regarding the structure of the projective sets whose only known proof from determinacy assumptions uses the link between determinacy and large cardinals. We may equivalently ask whether there are second order statements of number theory that cannot be proved under PD–the axiom of projective determinacy–without appealing to the large cardinal consequences of the PD, such as the existence of certain kinds of inner models that contain given types of large cardinals.


1998 ◽  
Vol 63 (3) ◽  
pp. 1116-1136 ◽  
Author(s):  
Andrés Villaveces

AbstractLarge cardinals arising from the existence of arbitrarily long end elementary extension chains over models of set theory are studied here. In particular, we show that the large cardinals obtained in this fashion (‘unfoldable cardinals’) lie in the boundary of the propositions consistent with ‘V = L’ and the existence of 0#. We also provide an ‘embedding characterisation’ of the unfoldable cardinals and study their preservation and destruction by various forcing constructions.


2014 ◽  
Vol 79 (4) ◽  
pp. 1247-1285 ◽  
Author(s):  
SEAN COX ◽  
MARTIN ZEMAN

AbstractIt is well known that saturation of ideals is closely related to the “antichain-catching” phenomenon from Foreman–Magidor–Shelah [10]. We consider several antichain-catching properties that are weaker than saturation, and prove:(1)If${\cal I}$is a normal ideal on$\omega _2 $which satisfiesstationary antichain catching, then there is an inner model with a Woodin cardinal;(2)For any$n \in \omega $, it is consistent relative to large cardinals that there is a normal ideal${\cal I}$on$\omega _n $which satisfiesprojective antichain catching, yet${\cal I}$is not saturated (or even strong). This provides a negative answer to Open Question number 13 from Foreman’s chapter in the Handbook of Set Theory ([7]).


1974 ◽  
Vol 39 (2) ◽  
pp. 254-268 ◽  
Author(s):  
William Boos

The results that follow are intended to be understood as informal counterparts to formal theorems of Zermelo-Fraenkel set theory with choice. Basic notation not explained here can usually be found in [5]. It will also be necessary to assume a knowledge of the fundamentals of boolean and generic extensions, in the style of Jech's monograph [3]. Consistency results will be stated as assertions about the existence of certain complete boolean algebras, B, C, etc., either outright or in the sense of a countable standard transitive model M of ZFC augmented by hypotheses about the existence of various large cardinals. Proofs will usually be phrased in terms of the forcing relation ⊩ over such an M, especially when they make heavy use of genericity. They are then assertions about Shoenfield-style P-generic extensions M(G), in which the ‘names’ are required without loss of generality to be elements of MB = (VB)M, B is the boolean completion of P in M (cf. [3, p. 50]: the notation there is RO(P)), the generic G is named by Ĝ ∈ MB such that (⟦p ∈ Ĝ⟧B = p and (cf. [11, p. 361] and [3, pp. 58–59]), and for p ∈ P and c1, …, cn ∈ MB, p ⊩ φ(c1, …, cn) iff ⟦φ(c1, …, cn)⟧B ≥ p (cf. [3, pp. 61–62]).Some prior acquaintance with large cardinal theory is also needed. At this writing no comprehensive introductory survey is yet in print, though [1], [10], [12]and [13] provide partial coverage. The scheme of definitions which follows is intended to fix notation and serve as a glossary for reference, and it is followed in turn by a description of the results of the paper. We adopt the convention that κ, λ, μ, ν, ρ and σ vary over infinite cardinals, and all other lower case Greek letters (except χ, φ, ψ, ϵ) over arbitrary ordinals.


Author(s):  
Colin McLarty

What mathematicians know and use about sets varies across branches of mathematics but rarely includes such fundamental aspects of Zermelo–Fraenkel (ZF) set theory as the iterative hierarchy. All mathematicians know and use the axioms of the Elementary Theory of the Category of Sets (ETCS), though few know ETCS or any set theory by name. The chapter depicts the iterative hierarchy of ZF and constructibility as gauge theories. Since gauge theories are prominently used in physics, so these are used in work on the continuum hypothesis, large cardinals, and provability in arithmetic. But mathematicians outside logic avoid these gauges and work with structures only up to isomorphism, as does ETCS.


1977 ◽  
Vol 42 (4) ◽  
pp. 523-526 ◽  
Author(s):  
J. M. Henle

Beginning with Ramsey's theorem of 1930, combinatorists have been intrigued with the notion of large cardinals satisfying partition relations. Years of research have established the smaller ones, weakly ineffable, Erdös, Jonsson, Rowbottom and Ramsey cardinals to be among the most interesting and important large cardinals in set theory. Recently, cardinals satisfying more powerful infinite-exponent partition relations have been examined with growing interest. This is due not only to their inherent qualities and the fact that they imply the existence of other large cardinals (Kleinberg [2], [3]), but also to the fact that the Axiom of Determinacy (AD) implies the existence of great numbers of such cardinals (Martin [5]).That these properties are more often than not inconsistent with the full Axiom of Choice (Kleinberg [4]) somewhat increases their charm, for the theorems concerning them tend to be a little odd, and their proofs, circumforaneous. The properties are, as far as anyone knows, however, consistent with Dependent Choice (DC).Our basic theorem will be the following: If k > ω and k satisfies k→(k)k then the least cardinal δ such that has a δ-additive, uniform ultrafilter. In addition, if ACω is assumed, we will show that δ is greater than ω, and hence a measurable cardinal. This result will be strengthened somewhat when we prove that for any k, δ, if then .


1995 ◽  
Vol 1 (3) ◽  
pp. 327-339 ◽  
Author(s):  
Itay Neeman

In this paper I shall present a method for proving determinacy from large cardinals which, in many cases, seems to yield optimal results. One of the main applications extends theorems of Martin, Steel and Woodin about determinacy within the projective hierarchy. The method can also be used to give a new proof of Woodin's theorem about determinacy in L(ℝ).The reason we look for optimal determinacy proofs is not only vanity. Such proofs serve to tighten the connection between large cardinals and descriptive set theory, letting us bring our knowledge of one subject to bear on the other, and thus increasing our understanding of both. A classic example of this is the Harrington-Martin proof that -determinacy implies -determinacy. This is an example of a transfer theorem, which assumes a certain determinacy hypothesis and proves a stronger one. While the statement of the theorem makes no mention of large cardinals, its proof goes through 0#, first proving that-determinacy ⇒ 0# exists,and then that0# exists ⇒ -determinacyMore recent examples of the connection between large cardinals and descriptive set theory include Steel's proof thatADL(ℝ) ⇒ HODL(ℝ) ⊨ GCH,see [9], and several results of Woodin about models of AD+, a strengthening of the axiom of determinacy AD which Woodin has introduced. These proofs not only use large cardinals, but also reveal a deep, structural connection between descriptive set theoretic notions and notions related to large cardinals.


Sign in / Sign up

Export Citation Format

Share Document