Reasons are Competitors

Reasons First ◽  
2021 ◽  
pp. 23-48
Author(s):  
Mark Schroeder

Chapter 2 introduces the classical argument for the analytic and explanatory priority of reasons, and articulates a minimal characterization of normative reasons to be relied on throughout the remainder of the book. According to the classical argument, which derives from W.D. Ross, reasons play an important role in the analysis of what we ought to do because they compete in the determination of what we ought to do. This argument is developed and expanded to treat the contrasting explanatory perspective of consequentializing moral theories and extended to apply to a wide range of moral concepts. In addition to competing, it is argued that to play their explanatory role, reasons must support actions rather than outcomes, and must in general be the kind of thing that can be acted on.

Author(s):  
Steven L McDougall ◽  
Mohammad Saberian ◽  
Cedric Briens ◽  
Franco Berruti ◽  
Edward W Chan

Monitoring the fluidization quality represents an operating challenge for many processes in which a liquid is sprayed into a gas-fluidized bed, such as fluid coking, fluid catalytic cracking, gas-phase polymerization, agglomeration and drying. Although the presence of liquid will generally have an adverse effect on fluidization, there are often strong incentives in operating with high liquid loadings. For the fluid coking process, for example, operating at lower reactor temperature increases yield and reduces emissions but increases the bed wetness, which may lead to local zones of poor mixing, local defluidization and a reduction in fluidization quality, compromising the reactor performance and stability. The objective of this study is to develop reliable methods to quantify the effects of liquids on fluidized beds.This study examined several methods to evaluate the fluidization quality. Each method was tested in a 3 m tall column, 0.3 m in diameter. Bed wetness was achieved with an atomized spray of various liquids, spanning a wide range of liquid properties.The introduction of liquid in a fluidized bed may result in the formation of wet agglomerates that settle at the bottom of the bed. The liquid may also spread on the particles, increasing their cohesivity and reducing the bed fluidity.Several experimental methods were developed to characterize the effect of liquids on fluidization. Some methods such as the falling ball velocity or the detection of micro-agglomeration from the entrainment of fine particles, are unaffected by agglomerates and detect only the change in bed fluidity. Other methods, such as deaeration or the determination of bubble size from the TDH, are affected by agglomerate formation and changes in bed fluidity.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Ke Lan ◽  
Guoxiang Xie ◽  
Wei Jia

Determination of pharmacokinetics (PKs) of multicomponent pharmaceuticals and/or nutraceuticals (polypharmacokinetics, poly-PKs) is difficult due to the vast number of compounds present in natural products, their various concentrations across a wide range, complexity of their interactions, as well as their complex degradation dynamicsin vivo. Metabolomics coupled with multivariate statistical tools that focus on the comprehensive analysis of small molecules in biofluids is a viable approach to address the challenges of poly-PK. This paper discusses recent advances in the characterization of poly-PK and the metabolism of multicomponent xenobiotic agents, such as compound drugs, dietary supplements, and herbal medicines, using metabolomics strategy. We propose a research framework that integrates the dynamic concentration profile of bioavailable xenobiotic molecules that result fromin vivoabsorption and hepatic and gut bacterial metabolism, as well as the human metabolic response profile. This framework will address the bottleneck problem in the pharmacological evaluation of multicomponent pharmaceuticals and nutraceuticals, leading to the direct elucidation of the pharmacological and molecular mechanisms of these compounds.


2016 ◽  
Vol 7 ◽  
pp. 492-500
Author(s):  
John D Parkin ◽  
Georg Hähner

Micro- and nanocantilevers are employed in atomic force microscopy (AFM) and in micro- and nanoelectromechanical systems (MEMS and NEMS) as sensing elements. They enable nanomechanical measurements, are essential for the characterization of nanomaterials, and form an integral part of many nanoscale devices. Despite the fact that numerous methods described in the literature can be applied to determine the static flexural spring constant of micro- and nanocantilever sensors, experimental techniques that do not require contact between the sensor and a surface at some point during the calibration process are still the exception rather than the rule. We describe a noncontact method using a microfluidic force tool that produces accurate forces and demonstrate that this, in combination with a thermal noise spectrum, can provide the static flexural spring constant for cantilever sensors of different geometric shapes over a wide range of spring constant values (≈0.8–160 N/m).


2017 ◽  
Vol 13 ◽  
pp. 1145-1167 ◽  
Author(s):  
Serge Pérez ◽  
Daniele de Sanctis

Synchrotron radiation is the most versatile way to explore biological materials in different states: monocrystalline, polycrystalline, solution, colloids and multiscale architectures. Steady improvements in instrumentation have made synchrotrons the most flexible intense X-ray source. The wide range of applications of synchrotron radiation is commensurate with the structural diversity and complexity of the molecules and macromolecules that form the collection of substrates investigated by glycoscience. The present review illustrates how synchrotron-based experiments have contributed to our understanding in the field of structural glycobiology. Structural characterization of protein–carbohydrate interactions of the families of most glycan-interacting proteins (including glycosyl transferases and hydrolases, lectins, antibodies and GAG-binding proteins) are presented. Examples concerned with glycolipids and colloids are also covered as well as some dealing with the structures and multiscale architectures of polysaccharides. Insights into the kinetics of catalytic events observed in the crystalline state are also presented as well as some aspects of structure determination of protein in solution.


Author(s):  
Sergio Filippi ◽  
Esequiel B. Rodrigues ◽  
Muzio M. Gola

The current paper presents a measurement system for the experimental determination of contact hysteresis cycles at temperatures up to 800° C. A test rig was designed to conduct experiments in a wide range of temperatures, with different combinations of normal and tangential load, frequencies and contacting materials. An induction system supplies the heat for measurements of hysteresis cycles at the required temperatures. Measurements show the dependence of the friction coefficient on temperature.


2019 ◽  
Vol 9 (6) ◽  
pp. 1068 ◽  
Author(s):  
Bernd Wolter ◽  
Yasmine Gabi ◽  
Christian Conrad

More than three decades ago, at Fraunhofer IZFP, research activities that were related to the application of micromagnetic methods for nondestructive testing (NDT) of the microstructure and the properties of ferrous materials commenced. Soon, it was observed that it is beneficial to combine the measuring information from several micromagnetic methods and measuring parameters. This was the birth of 3MA—the micromagnetic multi-parametric microstructure and stress analysis. Since then, 3MA has undergone a remarkable development. It has proven to be one of the most valuable testing techniques for the nondestructive characterization of metallic materials. Nowadays, 3MA is well accepted in industrial production and material research. Over the years, several equipment variants and a wide range of probe heads have been developed, ranging from magnetic microscopes with µm resolution up to large inspection systems for in-line strip steel inspection. 3MA is extremely versatile, as proved by a huge amount of reported applications, such as the quantitative determination of hardness, hardening depth, residual stress, and other material parameters. Today, specialized 3MA systems are available for manual or automated testing of various materials, semi-finished goods, and final products that are made of steel, cast iron, or other ferromagnetic materials. This paper will provide an overview of the historical development, the basic principles, and the main applications of 3MA.


Author(s):  
Ali Salah Omar Aweimer ◽  
Abdel-Hakim Bouzid ◽  
Mehdi Kazeminia

Predicting leakage in packed stuffing boxes is a major engineering challenge to designers and end users. Due to the different working conditions and material products, the determination of the flow regime present in packing rings is not a straightforward task to predict. This paper presents a study on the ability of micro channel flow models to predict leak rates through packing rings made of soft materials such as graphite. A methodology based on the experimental characterization of the porosity parameters is developed to predict leak rates at different compression stress levels. Three different models are compared to predicate the leakage, where the diffusive and second order flow models are derived from Naiver-Stokes equations and incorporate the boundary conditions of an intermediate flow regime to cover the wide range of leak rate levels. The lattice model is based on porous media of packing rings as packing bed (Dp). The flow porosity parameters (Rc,Dp) of the micro channels assumed to simulate the leak paths present in the packing are obtained experimentally. The predicted leak rates from different gasses (He, N2, Ar) are compared to those measured experimentally, in which the set of packing rings is mainly subjected to different gland stresses and pressures.


2020 ◽  
Vol 11 (1) ◽  
pp. 93-99
Author(s):  
Abu Zakir Morshed ◽  
Sheikh Shakib ◽  
Tanzim Jahin

Corrosion of reinforcement is an important durability concern for the structures exposed to coastal regions. Since corrosion of reinforcement involves long periods of time, impressed current technique is usually used to accelerate the corrosion of reinforcement in laboratories. Characterization of impressed current technique was the main focus of this research,which involved determination of optimum chloride content and minimum immersion time of specimens for which the application of Faraday’s law could be efficient. To obtain optimum chloride content, the electrolytes in the corrosion cell were prepared similar to that of concrete pore solutions. Concrete prisms of 200 mm by 200 mm by 300 mm were used to determine the minimum immersion time for saturation. It was found that the optimum chloride content was 35 gm/L and the minimum immersion time for saturation was 140 hours. Accounting the results, a modified expression based on Faraday’s law was proposed to calculate weight loss due to corrosion. Journal of Engineering Science 11(1), 2020, 93-99


2008 ◽  
Vol 2 (2) ◽  
pp. 155-177 ◽  
Author(s):  
Eugene Brently Young
Keyword(s):  

Eternal return is the paradox that accounts for the interplay between difference and repetition, a dynamic at the heart of Deleuze's philosophy, and Blanchot's approach to this paradox, even and especially through what it elides, further illuminates it. Deleuze draws on Blanchot's characterisations of difference, forgetting, and the unlivable to depict the ‘sense’ produced via eternal return, which, for Blanchot, is where repetition implicates or ‘carries’ pure difference. However, for Deleuze, difference and the unlivable are also developed by the living repetition or ‘contraction’ of habit, which results in his distinctive characterization of ‘force’, ‘levity’, and sense in eternal return.


Sign in / Sign up

Export Citation Format

Share Document