Functionalization of single-walled carbon nanotubes: Chemistry and characterization

Author(s):  
R. Graupner ◽  
F. Hauke

This article examines the chemical functionalization and structural alteration of single-walled carbon nanotubes (SWCNTs). It describes the covalent functionalization of the SWCNT framework that is the covalent attachment of functional entities onto the CNT scaffold. In particular, it considers the chemical modification and reactivity of SWCNTs in the context of the reactivity of graphite and fullerenes. It also discusses the defect and sidewall functionalization of SWCNTs, along with various techniques used in the characterization ofSWCNTs upon functionalization, namely: thermogravimetric analysis, spectroscopic techniques such as UV-Vis-NIR spectroscopy and Raman spectroscopy, and microscopic techniques like transmission electron microscopy, atomic force microscopy and scanning tunnelling microscopy.

Proceedings ◽  
2020 ◽  
Vol 56 (1) ◽  
pp. 33
Author(s):  
Marianna V. Kharlamova ◽  
Christian Kramberger ◽  
Oleg Domanov ◽  
Andreas Mittelberger ◽  
Kazuhiro Yanagi ◽  
...  

We performed endohedral functionalization of high-purity metallicity-sorted semiconducting and metallic single-walled carbon nanotubes (SWCNTs) with a mean diameter of 1.4 nm with silver chloride (AgCl) by the method of capillary filling with the melt. The AgCl-filled SWCNTs were investigated by high-resolution scanning transmission electron microscopy and spectroscopic techniques, such as Raman spectroscopy, X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy, which were combined to study comprehensively the modified electronic properties of the filled SWCNTs. The data revealed a downshift of the Fermi level of the nanotubes upon filling, i.e., a p-doping of SWCNTs.


2007 ◽  
Vol 561-565 ◽  
pp. 655-658 ◽  
Author(s):  
Qiang Zeng ◽  
Jennifer Luna ◽  
Y. Bayazitoglu ◽  
Kenneth Wilson ◽  
M. Ashraf Imam ◽  
...  

This study is considered as a method for producing multifunctional metal composite materials by using Single-walled Carbon Nanotubes (SWNTs). In this research, various metals (Ni, Cu, Ag ) were successfully deposited onto the surface of SWNTs. It has been found that homogenous dispersion and dense nucleation sites are the necessary conditions to form uniform coating on SWNTs. Functionalization has been applied to achieve considerable improvement in the dispersion of purified single-walled carbon nanotubes. A three-step electroless plating approach was used and the coating mechanism is described in the paper. The samples were characterized by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, and energy-dispersive X-ray spectroscopy (EDX). The application of coated SWNTs in Titanium will be discussed in this paper.


2006 ◽  
Vol 514-516 ◽  
pp. 1131-1134
Author(s):  
Jeremy Sloan ◽  
Robin Carter ◽  
Angus I. Kirkland ◽  
Rüdiger R. Meyer ◽  
Alexis Vlandas ◽  
...  

Restored high resolution transmission electron microscopy (HRTEM) images have been recorded from 1D semiconductor crystals formed within narrow diameter (ca. 1.4 nm) single walled carbon nanotubes (SWNTs). Two unique projections were obtained from separate crystal fragments encapsulated within separate nanotubes that has facilitated the reconstruction of the three dimensional arrangement of atoms within the two encapsulated fragments.


2012 ◽  
Vol 454 ◽  
pp. 63-66
Author(s):  
Xia Yuan ◽  
Yu Liang An ◽  
Chen Zhang ◽  
Hong Chao Sui

Single-walled carbon nanotubes (SWNTs) have been successfully prepared from starch by arc discharge technique. The SWNTs products were characterized by scanning electron microscopy, transmission electron microscopy and Raman spectroscopy. The growth mechanism of the SWNTs was discussed in terms of the starch. The results demonstrate that starch is one of the suitable precursor for making SWNTs by arc discharge method.


2015 ◽  
Vol 331 ◽  
pp. 271-277 ◽  
Author(s):  
Andrés Rodríguez-Galván ◽  
Alejandro Heredia ◽  
Oscar Amelines-Sarria ◽  
Margarita Rivera ◽  
Luis A. Medina ◽  
...  

2010 ◽  
Vol 148-149 ◽  
pp. 1607-1610
Author(s):  
Wei Xue Li ◽  
Dun Dong Wang ◽  
Hui Jin ◽  
Jian Feng Dai ◽  
Qing Wang

The Single-walled carbon nanotubes were coated with Ni-P layers by an electroless plating technique. A Ni-P layers are thick and smooth and on individual nanotube with thickness of 20 nm can be obtained after the deposition process. The Single-walled carbon nanotubes were obtained in the suspension of purification solution. The samples have been characterized by X-ray diffraction, selected area electron diffraction, transmission electron microscopy and energy dispersive spectrometry.The coating layers after heat-treatment convert the amorphous Ni-P coated layers into the nanocrystalline Ni-P layers.


2006 ◽  
Vol 05 (04n05) ◽  
pp. 407-411
Author(s):  
JUN JIAO ◽  
LIFENG DONG ◽  
VACHARA CHIRAYOS ◽  
JOCELYN BUSH ◽  
JAMES HEDBERG

Two effective methods for dispersion and alignment of single-walled carbon nanotubes (SWCNTs) were developed. One is the floating-potential dielectrophoresis (FPD) method, which can achieve the alignment of individual SWCNTs between two electrodes with high yield (more than 30%) and high repeatability. The second is the gas blow method. Using the shear forces associated with a rapidly moving fluid, SWCNTs were positioned in a direction corresponding to the flow vector of the fluid. This technique shows great potential for scaling up the displacement of SWCNTs with controlled orientations. Various dispersion agents including ethanol, dichlorobenzene, sodium dodecyl sulfate (SDS) and DNA were investigated with these two methods. It was found that SDS was the most effective dielectric medium used for FPD dispersion and alignment of SWCNTs. The result of electric measurement for the individual SWCNTs aligned between two electrodes suggests that, using the FPD method, both metallic and semiconducting SWCNTs could be aligned between the electrodes. The individual SWCNT resistances measured range from 20 KΩ to 5 MΩ suggesting a high contact resistance between an aligned SWCNT and metal electrodes. High resolution transmission electron microscopy (TEM) and scanning electron microscopy (SEM) characterization reveal DNA molecules wrapped around the SWNCTs after the dispersion process which may affect the intrinsic properties of SWCNTs.


2009 ◽  
Vol 6 (s1) ◽  
pp. S147-S152 ◽  
Author(s):  
Navaratnarajah Kuganathan

The structure and binding energies of antimony selenide crystals encapsulated within single-walled carbon nanotubes are studied using density functional theory. Calculations were performed on the simulated Sb2Se3structure encapsulated within single walled nanotube to investigate the perturbations on the Sb2Se3crystal and tube structure and electronic structure and to estimate the binding energy. The calculated structures are in good agreement with the experimental high resolution transmission electron microscopy images of the Sb2Se3@SWNT. The calculated binding energy shows that larger diameter tube could accommodate the Sb2Se3crystals exothermically. Minimal charge transfer is observed between nanotube and the Sb2Se3crystals.


Sign in / Sign up

Export Citation Format

Share Document