Neural Mechanisms for the Executive Control of Attention

Author(s):  
Earl K. Miller ◽  
Timothy J. Buschman

The prefrontal cortex is a source of internal control of attention as it captures three important components of an executive controller. First, it provides top-down selection of neural representations through descending projections, This top-down input may act by increasing the synchrony of local neural populations, enhancing their connectivity, and boosting the transmission of information. Second, intelligent top-down control of behaviour requires integrating diverse information. Neural representations in prefrontal cortex capture this breadth of information: representing anything from the specific contents of working memory to abstract categories and rules. Third, through reciprocal connections with the basal ganglia, prefrontal cortex neurons are ideally situated to learn the ‘rules’ of behaviour that allow us to know what to attend to in a given situation. These connections may support an iterative, bootstrapping, process that allows for increasingly complex rules to be learned. The prefrontal cortex acts as a generalized executive controller, acting through mechanisms such as attention, to guide thoughts and behaviour.

2002 ◽  
Vol 25 (2) ◽  
pp. 260-260
Author(s):  
Jeremy R. Gray ◽  
Todd S. Braver

The primrose path and prisoner's dilemma paradigms may require cognitive (executive) control: The active maintenance of context representations in lateral prefrontal cortex to provide top-down support for specific behaviors in the face of short delays or stronger response tendencies. This perspective suggests further tests of whether altruism is a type of self-control, including brain imaging, induced affect, and dual-task studies.


1999 ◽  
Vol 7 (6) ◽  
pp. E14
Author(s):  
William T. Couldwell

Knowledge or experience is voluntarily recalled from memory by reactivation of the neural representations in the cerebral association cortex. In inferior temporal cortex, which serves as the storehouse of visual long-term memory, activation of mnemonic engrams through electric stimulation results in imagery recall in humans, and neurons can be dynamically activated by the necessity for memory recall in monkeys. Neuropsychological studies and previous split-brain experiments predicted that prefrontal cortex exerts executive control upon inferior temporal cortex in memory retrieval; however, no neuronal correlate of this process has ever been detected. Here we show evidence of the top-down signal from prefrontal cortex. In the absence of bottom-up visual inputs, single inferior temporal neurons were activated by the top-down signal, which conveyed information on semantic categorization imposed by visual stimulus-stimulus association. Behavioural performance was severely impaired with loss of the top-down signal. Control experiments confirmed that the signal was transmitted not through a subcortical but through a fronto-temporal cortical pathway. Thus, feedback projections from prefrontal cortex to the posterior association cortex appear to serve the executive control of voluntary recall.


Nature ◽  
10.1038/44372 ◽  
1999 ◽  
Vol 401 (6754) ◽  
pp. 699-703 ◽  
Author(s):  
Hyoe Tomita ◽  
Machiko Ohbayashi ◽  
Kiyoshi Nakahara ◽  
Isao Hasegawa ◽  
Yasushi Miyashita

2021 ◽  
Vol 14 ◽  
Author(s):  
Rinaldo Livio Perri ◽  
Valentina Bianco ◽  
Enrico Facco ◽  
Francesco Di Russo

Compelling literature has suggested the possibility of adopting hypnotic suggestions to override the Stroop interference effect. However, most of these studies mainly reported behavioral data and were conducted on highly hypnotizable individuals. Thus, the question of the neural locus of the effects and their generalizability remains open. In the present study, we used the Stroop task in a within-subject design to test the neurocognitive effects of two hypnotic suggestions: the perceptual request to focus only on the central letter of the words and the semantic request to observe meaningless symbols. Behavioral results indicated that the two types of suggestions did not alter response time (RT), but both favored more accurate performance compared to the control condition. Both types of suggestions increased sensory awareness and reduced discriminative visual attention, but the perceptual request selectively engaged more executive control of the prefrontal cortex (PFC), and the semantic request selectively suppressed the temporal cortex activity devoted to graphemic analysis of the words. The present findings demonstrated that the perceptual and the semantic hypnotic suggestions reduced Stroop errors through common and specific top-down modulations of different neurocognitive processes but left the semantic activation unaltered. Finally, as we also recruited participants with a medium level of hypnotizability, the present data might be considered potentially representative of the majority of the population.


2019 ◽  
Author(s):  
Alexia Bourgeois ◽  
Carole Guedj ◽  
Emmanuel Carrera ◽  
Patrik Vuilleumier

Selective attention is a fundamental cognitive function that guides behavior by selecting and prioritizing salient or relevant sensory information of our environment. Despite early evidence and theoretical proposal pointing to an implication of thalamic control in attention, most studies in the past two decades focused on cortical substrates, largely ignoring the contribution of subcortical regions as well as cortico-subcortical interactions. Here, we suggest a key role of the pulvinar in the selection of salient and relevant information via its involvement in priority maps computation. Prioritization may be achieved through a pulvinar- mediated generation of alpha oscillations, which may then modulate neuronal gain in thalamo-cortical circuits. Such mechanism might orchestrate the synchrony of cortico-cortical interaction, by rendering neural communication more effective, precise and selective. We propose that this theoretical framework will support a timely shift from the prevailing cortico- centric view of cognition to a more integrative perspective of thalamic contributions to attention and executive control processes.


2019 ◽  
Vol 30 (1) ◽  
pp. 85-99 ◽  
Author(s):  
Farshad A Mansouri ◽  
Mark J Buckley ◽  
Daniel J Fehring ◽  
Keiji Tanaka

Abstract Imaging and neural activity recording studies have shown activation in the primate prefrontal cortex when shifting attention between visual dimensions is necessary to achieve goals. A fundamental unanswered question is whether representations of these dimensions emerge from top-down attentional processes mediated by prefrontal regions or from bottom-up processes within visual cortical regions. We hypothesized a causative link between prefrontal cortical regions and dimension-based behavior. In large cohorts of humans and macaque monkeys, performing the same attention shifting task, we found that both species successfully shifted between visual dimensions, but both species also showed a significant behavioral advantage/bias to a particular dimension; however, these biases were in opposite directions in humans (bias to color) versus monkeys (bias to shape). Monkeys’ bias remained after selective bilateral lesions within the anterior cingulate cortex (ACC), frontopolar cortex, dorsolateral prefrontal cortex (DLPFC), orbitofrontal cortex (OFC), or superior, lateral prefrontal cortex. However, lesions within certain regions (ACC, DLPFC, or OFC) impaired monkeys’ ability to shift between these dimensions. We conclude that goal-directed processing of a particular dimension for the executive control of behavior depends on the integrity of prefrontal cortex; however, representation of competing dimensions and bias toward them does not depend on top-down prefrontal-mediated processes.


Sign in / Sign up

Export Citation Format

Share Document