Evidence for In Vivo Synthesis of Thiamin Triphosphate by Cytosolic Adenylate Kinase in Chicken Skeletal Muscle

1990 ◽  
Vol 108 (2) ◽  
pp. 267-270 ◽  
Author(s):  
Kazuo Miyoshi ◽  
Yoshiko Egi ◽  
Toshihiro Shioda ◽  
Takashi Kawasaki
2019 ◽  
Vol 20 (7) ◽  
pp. 1608 ◽  
Author(s):  
Bowen Hu ◽  
Shuang Hu ◽  
Minmin Yang ◽  
Zhiying Liao ◽  
Dexiang Zhang ◽  
...  

The growth hormone receptor (GHR) gene is correlated with many phenotypic and physiological alternations in chicken, such as shorter shanks, lower body weight and muscle mass loss. However, the role of the GHR gene in mitochondrial function remains unknown in poultry. In this study, we assessed the function of mitochondria in sex-linked dwarf (SLD) chicken skeletal muscle and interfered with the expression of GHR in DF-1 cells to investigate the role of the GHR gene in chicken mitochondrial function both in vivo and in vitro. We found that the expression of key regulators of mitochondrial biogenesis and mitochondrial DNA (mtDNA)-encoded oxidative phosphorylation (OXPHOS) genes were downregulated and accompanied by reduced enzymatic activity of OXPHOS complexes in SLD chicken skeletal muscle and GHR knockdown cells. Then, we assessed mitochondrial function by measuring mitochondrial membrane potential (ΔΨm), mitochondrial swelling, reactive oxygen species (ROS) production, malondialdehyde (MDA) levels, ATP levels and the mitochondrial respiratory control ratio (RCR), and found that mitochondrial function was impaired in SLD chicken skeletal muscle and GHR knockdown cells. In addition, we also studied the morphology and structure of mitochondria in GHR knockdown cells by transmission electron microscopy (TEM) and MitoTracker staining. We found that knockdown of GHR could reduce mitochondrial number and alter mitochondrial structure in DF-1 cells. Above all, we demonstrated for the first time that the GHR gene is essential for chicken mitochondrial function in vivo and in vitro.


1988 ◽  
Vol 118 (2) ◽  
pp. 301-305 ◽  
Author(s):  
K. Gréen ◽  
O. Vesterqvist ◽  
V. Grill

Abstract. The in vivo synthesis of thromboxane A2 and prostacyclin was estimated in 23 diabetics through measurements of the major urinary metabolites 2,3-dinor-thromboxane B2 and 2,3-dinor-6-keto-PGF1α utilizing gas chromatography-mass spectrometry. Mean excretion was similar to that in non-diabetic subjects. The possible influence of hyperglycemia on the excretion of 2,3-dinor-thromboxane B2 and 2,3-dinor-6-keto-PGF1α was evaluated in three ways: by measuring excretion before and during an acute 9-h normalization of hyperglycemia through an artificial pancreas (Biostator) as well as by comparing excretion before and 7–12 days or 40–180 days after the initiation of insulin treatment. Despite significant reducing effects on hyperglycemia or on levels of hemoglobin A1c, no effects on the excretion of the thromboxane and prostacyclin metabolites could be found. Abnormal formation of thromboxane or prostacyclin is not a generalized feature of the diabetic state.


2020 ◽  
Vol 4 (1) ◽  
Author(s):  
Bruno Paun ◽  
Daniel García Leon ◽  
Alex Claveria Cabello ◽  
Roso Mares Pages ◽  
Elena de la Calle Vargas ◽  
...  

Abstract Background Skeletal muscle injury characterisation during healing supports trauma prognosis. Given the potential interest of computed tomography (CT) in muscle diseases and lack of in vivo CT methodology to image skeletal muscle wound healing, we tracked skeletal muscle injury recovery using in vivo micro-CT in a rat model to obtain a predictive model. Methods Skeletal muscle injury was performed in 23 rats. Twenty animals were sorted into five groups to image lesion recovery at 2, 4, 7, 10, or 14 days after injury using contrast-enhanced micro-CT. Injury volumes were quantified using a semiautomatic image processing, and these values were used to build a prediction model. The remaining 3 rats were imaged at all monitoring time points as validation. Predictions were compared with Bland-Altman analysis. Results Optimal contrast agent dose was found to be 20 mL/kg injected at 400 μL/min. Injury volumes showed a decreasing tendency from day 0 (32.3 ± 12.0mm3, mean ± standard deviation) to day 2, 4, 7, 10, and 14 after injury (19.6 ± 12.6, 11.0 ± 6.7, 8.2 ± 7.7, 5.7 ± 3.9, and 4.5 ± 4.8 mm3, respectively). Groups with single monitoring time point did not yield significant differences with the validation group lesions. Further exponential model training with single follow-up data (R2 = 0.968) to predict injury recovery in the validation cohort gave a predictions root mean squared error of 6.8 ± 5.4 mm3. Further prediction analysis yielded a bias of 2.327. Conclusion Contrast-enhanced CT allowed in vivo tracking of skeletal muscle injury recovery in rat.


Nano Letters ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 1124-1131
Author(s):  
Le Wang ◽  
Junchuan Yang ◽  
Sixiang Li ◽  
Qizhen Li ◽  
Shaoqin Liu ◽  
...  

Metabolites ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 481
Author(s):  
Gemma G. Martínez-García ◽  
Raúl F. Pérez ◽  
Álvaro F. Fernández ◽  
Sylvere Durand ◽  
Guido Kroemer ◽  
...  

Autophagy is an essential protective mechanism that allows mammalian cells to cope with a variety of stressors and contributes to maintaining cellular and tissue homeostasis. Due to these crucial roles and also to the fact that autophagy malfunction has been described in a wide range of pathologies, an increasing number of in vivo studies involving animal models targeting autophagy genes have been developed. In mammals, total autophagy inactivation is lethal, and constitutive knockout models lacking effectors of this route are not viable, which has hindered so far the analysis of the consequences of a systemic autophagy decline. Here, we take advantage of atg4b−/− mice, an autophagy-deficient model with only partial disruption of the process, to assess the effects of systemic reduction of autophagy on the metabolome. We describe for the first time the metabolic footprint of systemic autophagy decline, showing that impaired autophagy results in highly tissue-dependent alterations that are more accentuated in the skeletal muscle and plasma. These changes, which include changes in the levels of amino-acids, lipids, or nucleosides, sometimes resemble those that are frequently described in conditions like aging, obesity, or cardiac damage. We also discuss different hypotheses on how impaired autophagy may affect the metabolism of several tissues in mammals.


Sign in / Sign up

Export Citation Format

Share Document