Detection of Two Membrane Polypeptides Induced by Abscisic Acid and Cold Acclimation: Possible Role in Freezing Tolerance

2015 ◽  
Vol 25 (3) ◽  
pp. 293-305 ◽  
Author(s):  
Imed E. Dami ◽  
Shouxin Li ◽  
Patricia A. Bowen ◽  
Carl P. Bogdanoff ◽  
Krista C. Shellie ◽  
...  

Economic loss due to cold weather events is a major constraint to winegrape (Vitis vinifera) production and wine-related industries where extreme and/or fluctuating winter temperatures induce injury and require remedial retraining and replanting increases production costs and lowers yield and fruit quality. The purpose of this study was to determine whether a foliar application of abscisic acid (ABA) could increase the freezing tolerance (FT) of field-grown, ‘Chardonnay’ winegrape and whether its effectiveness can be influenced by the phenological timing of the application. Mature ‘Chardonnay’ grapevines were treated with a foliar application of ABA at a concentration of 500 mg·L−1 at vine phenological stages corresponding to 50% véraison, postvéraison, and postharvest. Results from field trial sites located in four distinct winegrape production regions in the United States (Idaho and Ohio) and Canada (British Columbia and Ontario) showed that foliar application of ABA increased bud FT, primarily during autumn cold acclimation. Foliar ABA application had no consistent influence on bud FT in midwinter or during spring deacclimation, or on percent budburst in spring. Vine phenological stage at the time of ABA foliar application influenced ABA effectiveness, although results were inconsistent among locations. At most locations, applications made at véraison or postvéraison were more effective than applications made postharvest. No phytotoxic response or adverse changes in yield or berry composition were detected in response to ABA application. The consistent increase in bud FT during autumn cold acclimation observed at all trial locations in this study indicates that foliar ABA, applied at véraison or postvéraison, can reduce the risk of economic loss due to cold injury in production regions with frequent early autumn cold weather events.


2008 ◽  
Vol 133 (4) ◽  
pp. 542-550 ◽  
Author(s):  
Xunzhong Zhang ◽  
Kehua Wang ◽  
Erik H. Ervin

Recent advances in bermudagrass [Cynodon dactylon (L.) Pers. var. dactylon] breeding and cultural management practices have enabled its use as a sports surface in U.S. Department of Agriculture cold hardiness zones 5 and 6. Use of these more cold-hardy bermudagrass cultivars further into transition- and cool-season zones increases the probability of freezing injury and increases the need for an improved understanding of physiological responses to chilling and freezing temperatures. Abscisic acid (ABA) has been shown to increase during cold acclimation (CA) and play a role in dehydration tolerance. This study investigated changes in ABA metabolism and dehydrin expression during CA and their association with freezing tolerance in four bermudagrass cultivars. Two cold-tolerant (‘Patriot’ and ‘Riviera’) and two relatively cold-sensitive (‘Tifway’ and ‘Princess’) cultivars were either subjected to CA at 8 °C day/4 °C night with a light intensity of 250 μmol·m−2·s−1 over a 10-h photoperiod for 21 days or maintained at 28 °C day/24 °C night over a 12-h photoperiod. In a separate study, exogenous ABA at 0, 50, 100, and 150 μm was applied to ‘Patriot’ bermudagrass without CA. ABA content in leaf and stolon tissues increased substantially during the first week of CA and remained relatively stable thereafter. ‘Patriot’ and ‘Riviera’ had greater ABA content and less stolon electrolyte leakage (EL) relative to ‘Tifway’ and ‘Princess’. Expression of a 25 kDa dehydrin protein increased during CA in all four cultivars. A significant correlation was found between ABA content and freezing tolerance. Exogenously applying ABA to ‘Patriot’ at 50, 100, and 150 μm significantly increased endogenous ABA content and the 25 kDa dehydrin expression and reduced stolon EL. The results suggest that alteration of ABA metabolism during CA is closely associated with freezing tolerance. Selection and use of cultivars with substantial accumulation of ABA and certain dehydrins during CA or in response to exogenous ABA could improve bermudagrass persistence in transition zone climates.


HortScience ◽  
2015 ◽  
Vol 50 (3) ◽  
pp. 387-394 ◽  
Author(s):  
Yang Yang ◽  
Zhongkui Jia ◽  
Faju Chen ◽  
Ziyang Sang ◽  
Luyi Ma

The rare species Magnolia wufengensis frequently suffers from freezing injury in northern China. To investigate the influence of exogenous abscisic acid (ABA) application on the natural cold acclimation of M. wufengensis, physiological and biochemical changes in field-grown M. wufengensis seedlings subjected to foliar ABA treatments at four concentrations (0, 300, 600, and 900 mg·L−1) were evaluated from Sept. 2012 to Jan. 2013. The optimum foliar application concentrations of ABA for M. wufengensis were between 600 and 900 mg·L−1, which led to faster shoot growth cessation, leaf senescence, and development rates of bud endodormancy level and shoot freezing tolerance. The improved freezing tolerance under exogenous ABA application was associated with promoted dehydration and accumulation of proline, soluble protein, and certain soluble sugars such as glucose and fructose. Foliar ABA treatments initiated a cascade of steps for advancing the cold acclimation process of M. wufengensis. We suggest that exogenous ABA application may be used on M. wufengensis grown in northern China, where there are short growing seasons and early fall frost events.


HortScience ◽  
2015 ◽  
Vol 50 (7) ◽  
pp. 1075-1080 ◽  
Author(s):  
Lixin Xu ◽  
Mili Zhang ◽  
Xunzhong Zhang ◽  
Lie-Bao Han

Zoysiagrass (Zoysia spp.), a warm-season turfgrass species, experiences freezing damage in many regions. The mechanisms of its cold acclimation and freezing tolerance have not been well understood. This study was designed to investigate effects of cold acclimation treatment on leaf abscisic acid (ABA), cytokinin (transzeatin riboside (t-ZR), and antioxidant metabolism associated with freezing tolerance in zoysiagrass (Zoysia japonica). ‘Chinese Common’ zoysiagrass was subjected to either cold acclimation treatment with temperature at 8/2 °C (day/night) and a photosynthetically active radiation (PAR) of 250 µmol·m−2·s−1 over a 10-hour photoperiod or normal environments (temperature at 28/24 °C (day/night), PAR at 400 µmol·m−2·s−1 and 14-hour photoperiod) for 21 days in growth chambers. Cold treatment caused cell membrane injury as indicated by increased leaf cell membrane electrolyte leakage (EL) and malondialdehyde (MDA) content after 7 days of cold treatment. Cold treatment increased leaf ABA and hydrogen peroxide content and reduced t-ZR content. Leaf superoxide dismutase (SOD), ascorbate peroxidase (APX) activity, and proline content increased, whereas catalase (CAT) and peroxidase (POD) activity declined in response to cold treatment. Cold treatment increased freezing tolerance as LT50 declined from −4.8 to −12.5 °C. The results of this study indicated that cold acclimation treatment might result in increases in ABA and H2O2, which induce antioxidant metabolism responses and improved freezing tolerance in zoysiagrass.


2008 ◽  
Vol 148 (2) ◽  
pp. 1094-1105 ◽  
Author(s):  
Juan C. Cuevas ◽  
Rosa López-Cobollo ◽  
Rubén Alcázar ◽  
Xavier Zarza ◽  
Csaba Koncz ◽  
...  

2018 ◽  
Vol 98 (5) ◽  
pp. 1109-1118 ◽  
Author(s):  
Mervi M. Seppänen ◽  
Ville Alitalo ◽  
Hanna K. Bäckström ◽  
Kirsi Mäkiniemi ◽  
Venla Jokela ◽  
...  

Alfalfa (Medicago sativa L.) is one of the most popular forage legume crops worldwide. Its cultivation in the boreal and sub-boreal zone is restricted by inadequate winter hardiness, but global warming may increase its adaptability in these latitudes. Here, we examined variation in growth and freezing tolerance of four alfalfa cultivars recommended for the northern temperate climates of Europe (Alexis, Lavo, Live, and Nexus) and two cultivars with adaptation to milder or Mediterranean climates (Rangelander and Hunter River). Two experiments under controlled conditions (growth cessation and cold acclimation experiments) along with a 2-yr field experiment were conducted. Lavo was the most freezing-tolerant cultivar in both the cold acclimation and field experiments. Both Rangelander and Hunter River showed poor freezing tolerance. Lavo responded to decreasing temperatures, unlike the response to shorter day length, by allocating biomass to the roots. In general, better freezing tolerance was associated with high total nonstructural carbohydrate and low starch content. The field experiment results revealed that the more freezing-tolerant cultivars may have some advantages regarding yield, especially in the second year, but the differences between the cultivars were modest.


Sign in / Sign up

Export Citation Format

Share Document