aba metabolism
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 23)

H-INDEX

17
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Riwen Fei ◽  
Siyang Duan ◽  
Jiayuan Ge ◽  
Tianyi Sun ◽  
Xiaomei Sun

Abstract Seed dormancy and germination is a complex process, which is affected by external environmental conditions and internal factors independently or mutually. Phytohormones play an important regulatory role in this process. ABA was the main phytohormone affecting herbaceous peony seed dormancy release. However, the mechanism of ABA in the dormancy release of herbaceous peony needs to be further explored. Here, transcriptome data was screened from the perspective of ABA metabolism, and significantly differentially expressed PlNCED1 and PlNCED2 were obtained. We found that their expression trends were positively correlated with ABA content. Among them, PlNCED2 had a stronger regulatory effect on ABA content and was more sensitive to exogenous ABA. Overexpression and silencing of PlNCEDs in callus could affect the expression of PlCYP707As and the content of endogenous ABA. Through the observation of seed germination of Arabidopsis thaliana (A. thaliana), we found PlNCED1 and PlNCED2 promoted seed dormancy, and the promotion effect of PlNCED2 was more obvious. In general, PlNCED1 and PlNCED2 participated in the dormancy release of herbaceous peony seeds by regulating the accumulation of endogenous ABA. Our work can reveal the molecular mechanism and related theories of ABA involved in herbaceous peony seed dormancy release.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shenglan Li ◽  
Fulai Liu

Plants have evolved multiple strategies to survive and adapt when confronting the changing climate, including elevated CO2 concentration (e[CO2]) and intensified drought stress. To explore the role of abscisic acid (ABA) in modulating the response of plant water relation characteristics to progressive drought under ambient (a[CO2], 400 ppm) and e[CO2] (800 ppm) growth environments, two tomato (Solanum lycopersicum) genotypes, Ailsa Craig (AC) and its ABA-deficient mutant (flacca), were grown in pots, treated with or without exogenous ABA, and exposed to progressive soil drying until all plant available water in the pot was depleted. The results showed that exogenous ABA application improved leaf water potential, osmotic potential, and leaf turgor and increased leaf ABA concentrations ([ABA]leaf) in AC and flacca. In both genotypes, exogenous ABA application decreased stomatal pore aperture and stomatal conductance (gs), though these effects were less pronounced in e[CO2]-grown AC and gs of ABA-treated flacca was gradually increased until a soil water threshold after which gs started to decline. In addition, ABA-treated flacca showed a partly restored stomatal drought response even when the accumulation of [ABA]leaf was vanished, implying [ABA]leaf might be not directly responsible for the decreased gs. During soil drying, [ABA]leaf remained higher in e[CO2]-grown plants compared with those under a[CO2], and a high xylem sap ABA concentration was also noticed in the ABA-treated flacca especially under e[CO2], suggesting that e[CO2] might exert an effect on ABA degradation and/or redistribution. Collectively, a fine-tune ABA homeostasis under combined e[CO2] and drought stress allowed plants to optimize leaf gas exchange and plant water relations, yet more detailed research regarding ABA metabolism is still needed to fully explore the role of ABA in mediating plant physiological response to future drier and CO2-enriched climate.


2021 ◽  
pp. 153538
Author(s):  
Mohamed S. Youssef ◽  
Sylvie Renault ◽  
Robert D. Hill ◽  
Claudio Stasolla
Keyword(s):  

Author(s):  
Muhmmad Asad Ullah Asad ◽  
Fubiao Wang ◽  
Yu Ye ◽  
Xianyue Guan ◽  
Lujian Zhou ◽  
...  

Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1119
Author(s):  
Basmah M. Alharbi ◽  
Awatif Mahfouz Abdulmajeed ◽  
Heba Hassan

To assess the effect of triacontanol (TRIA) on rice plants grown under normal or drought conditions, rice seeds were presoaked in TRIA (35 ppm) for two hours. After 20 days of sowing, rice seedlings developed from TRIA-treated or untreated seeds were subjected to drought stress. After 10 days of plant exposure to drought stress, data of major growth attributes and the content of photosynthetic pigments were recorded. Moreover, the effect of drought stress on stomatal conductance and the photochemical efficiency of PSII (Fv/Fm) were followed. The data obtained indicated that the species of rice (Oryza sativa L.) cultivar Giza 177 under investigation was sensitive to drought stress where there were significant decreases in the fresh and dry weights of shoots and roots and in stomatal conductance, as well as in the content of chlorophyll a, chlorophyll b, and carotenoids. Seed priming with TRIA enhanced both growth and acquired plant tolerance to drought stress. Thus, TRIA via the enhancement of stomatal conductance through the regulation of stomatal closure, the rate of water loss, ABA metabolism, the accumulation of osmolytes, and the regulation of aquaporins genes improved the water status of plants grown under water scarcity. Moreover, TRIA via increasing the content of free amino acids and sugars under drought stress may increase the chance of plant tissues to retain more water under scarcity conditions.


2021 ◽  
Vol 22 (10) ◽  
pp. 5069
Author(s):  
Naoto Sano ◽  
Annie Marion-Poll

Abscisic acid (ABA) is a key hormone that promotes dormancy during seed development on the mother plant and after seed dispersal participates in the control of dormancy release and germination in response to environmental signals. The modulation of ABA endogenous levels is largely achieved by fine-tuning, in the different seed tissues, hormone synthesis by cleavage of carotenoid precursors and inactivation by 8′-hydroxylation. In this review, we provide an overview of the current knowledge on ABA metabolism in developing and germinating seeds; notably, how environmental signals such as light, temperature and nitrate control seed dormancy through the adjustment of hormone levels. A number of regulatory factors have been recently identified which functional relationships with major transcription factors, such as ABA INSENSITIVE3 (ABI3), ABI4 and ABI5, have an essential role in the control of seed ABA levels. The increasing importance of epigenetic mechanisms in the regulation of ABA metabolism gene expression is also described. In the last section, we give an overview of natural variations of ABA metabolism genes and their effects on seed germination, which could be useful both in future studies to better understand the regulation of ABA metabolism and to identify candidates as breeding materials for improving germination properties.


2021 ◽  
Author(s):  
Yuqing Rong ◽  
Tiezheng Li ◽  
Xiao Liu ◽  
Shepo Shi ◽  
Xiaohui Wang ◽  
...  

Abstract Transaldolase, the key enzyme of the pentose-phosphate pathway, plays an important role in plant growth and defense. Seed germination is a key factor that influences the cultivation of Aquilaria sinensis, the plant source of agarwood, which is widely used as a traditional medicine, perfume and incenses. However, little is known about the function of transaldolase in abscisic acid (ABA)-mediated seed germination. In the present study, the full-length AsTal1 gene was isolated and characterized from A. sinensis calli. Sublocalization analysis indicated that AsTal1 was localized in the cytoplasm. In addition, phenotypic analysis indicated that AsTal1-overexpressing Nicotiana benthamiana (OE) plants were less sensitive to ABA during seed germination and root growth than wild-type (WT) plants. Overexpression of AsTal1 regulated the expression of genes involved in ABA metabolism, biosynthesis and signal transduction under ABA treatment. In addition, expression of NbRbohA and NbRbohB was inhibited in the overexpression lines, whereas the abundance and activities of the antioxidative enzymes SOD, APX, and POD were higher in the transgenic plants than in the WT lines after ABA treatment. Taken together, our results indicated that AsTal1 is involved in the ABA response during seed germination and root growth by regulating the expression of genes involved in the ABA signaling pathway and the enzymes responsive to ROS.


2020 ◽  
Author(s):  
Hai-Ping Hao ◽  
Yan-Mei Dong ◽  
Xiao-Pei Zhu ◽  
Hong-Tong Bai ◽  
Hui Li ◽  
...  

Abstract Background Lavender flowers essential oil had been used for a variety of therapeutic and cosmetic purposes, and had been popular for centuries. The previous studies of lavender mainly focused on essential oil composition and extraction methods, ignoring the factors that affected the production of essential oils, such as the floret number. This study aims to get a deep insight into the mechanism of florets number difference. Results 1.Hormone profile showed positive correlation between ABA content and the number of florets, while IAA was negatively correlated. 2. RNA-Seq results showed that 2848 differentially expressed genes (DEG) were screened by comparing different florets samples in one plant. By analyzing dynamic changes of differentially expressed genes, many potentially interesting genes that encoded putative regulators or key components of ABA metabolism and signaling transduction were identified, such as NCED, PYL, PP2C, SnRK2. 3.Common network analysis showed that the key genes of ABA pathway metabolism were negatively related to the DEG of IAA, especial IAA18. 4. Exogenous IAA significantly inhibited the number of lavender florets and affected the expression of ABA pathway metabolism genes, such as NCED, PP2C.Conclusions 1. The different concentrations of ABA lead to florets number difference in the L.angustifolia “JX-2” clusters; 2. ABA may affect the florets number by regulating IAA transport and accumulation.The results will be useful for a better understanding of the molecular mechanism on florets number difference, which will lay the foundation for molecular breeding of muti-flortes varieties.


2020 ◽  
Vol 21 (24) ◽  
pp. 9706
Author(s):  
Aaron J. Ogden ◽  
Shadan Abdali ◽  
Kristin M. Engbrecht ◽  
Mowei Zhou ◽  
Pubudu P. Handakumbura

Drought is the largest stress affecting agricultural crops, resulting in substantial reductions in yield. Plant adaptation to water stress is a complex trait involving changes in hormone signaling, physiology, and morphology. Sorghum (Sorghum bicolor (L.) Moench) is a C4 cereal grass; it is an agricultural staple, and it is particularly drought-tolerant. To better understand drought adaptation strategies, we compared the cytosolic- and organelle-enriched protein profiles of leaves from two Sorghum bicolor genotypes, RTx430 and BTx642, with differing preflowering drought tolerances after 8 weeks of growth under water limitation in the field. In agreement with previous findings, we observed significant drought-induced changes in the abundance of multiple heat shock proteins and dehydrins in both genotypes. Interestingly, our data suggest a larger genotype-specific drought response in protein profiles of organelles, while cytosolic responses are largely similar between genotypes. Organelle-enriched proteins whose abundance significantly changed exclusively in the preflowering drought-tolerant genotype RTx430 upon drought stress suggest multiple mechanisms of drought tolerance. These include an RTx430-specific change in proteins associated with ABA metabolism and signal transduction, Rubisco activation, reactive oxygen species scavenging, flowering time regulation, and epicuticular wax production. We discuss the current understanding of these processes in relation to drought tolerance and their potential implications.


Sign in / Sign up

Export Citation Format

Share Document