Accumulation of Prolamines and Glutelins during Rice Seed Development: a Quantitative Evaluation

2021 ◽  
Vol 7 (3) ◽  
pp. eabc8873
Author(s):  
Peng Qin ◽  
Guohua Zhang ◽  
Binhua Hu ◽  
Jie Wu ◽  
Weilan Chen ◽  
...  

Long-distance transport of the phytohormone abscisic acid (ABA) has been studied for ~50 years, yet its mechanistic basis and biological significance remain very poorly understood. Here, we show that leaf-derived ABA controls rice seed development in a temperature-dependent manner and is regulated by defective grain-filling 1 (DG1), a multidrug and toxic compound extrusion transporter that effluxes ABA at nodes and rachilla. Specifically, ABA is biosynthesized in both WT and dg1 leaves, but only WT caryopses accumulate leaf-derived ABA. Our demonstration that leaf-derived ABA activates starch synthesis genes explains the incompletely filled and floury seed phenotypes in dg1. Both the DG1-mediated long-distance ABA transport efficiency and grain-filling phenotypes are temperature sensitive. Moreover, we extended these mechanistic insights to other cereals by observing similar grain-filling defects in a maize DG1 ortholog mutant. Our study demonstrates that rice uses a leaf-to-caryopsis ABA transport–based mechanism to ensure normal seed development in response to variable temperatures.


2021 ◽  
pp. 36-40
Author(s):  
Yeon Bok Kim ◽  
Ramaraj Sathasivam ◽  
Soo-Un Kim ◽  
Sang Un Park

The black rice (Oryza sativa cv. Heugjinju) is rich in anthocyanins which is beneficial to human health. To correlate the biosynthesis of the pigments with relevant genes, the mRNA level of genes involved in anthocyanin biosynthesis was monitored by quantitative real-time polymerase chain reaction (qRT-PCR) during seed development of black rice. The mRNA level of F3’H, DFR, and ANS, key enzymes in anthocyanidin biosynthesis, peaked at 10 days after flowering. In general, the absolute level of ANS was approximately one order higher than F3’H, F3’5’H, and DFR in 10 days after flowering. The transcript level of major seed protein gene GluA-3, taken as reference, was also at the highest on the 10 days after flowering. However, the level of CHS isogenes was highest at 15 or 20 days after flowering. The highest transcript level of the genes, except CHS, preceded the highest anthocyanidin content by 5 days. This pattern coincided with an increase of anthocyanin content between 10 and 15 days after flowering. From these findings, it is suggested that particular CHS isoforms might be responsible for the anthocyanin production in black rice.


2021 ◽  
Author(s):  
Fu Guo ◽  
Peijing Zhang ◽  
Yan Wu ◽  
Guiwei Lian ◽  
Wu Liu ◽  
...  

LEAFY COTYLEDON1 (LEC1) is the central regulator of seed development. During seed development, rice embryo photosynthesis is completely blocked, which is different from Arabidopsis green embryo. However, effects of LEC1 on photosynthesis in developing seeds is largely elusive. We generated OsLEC1 mutants using the CRISPR/Cas9 technique. Oslec1 mutant seeds lost the ability of dormancy and triggered photosynthesis in embryos at the early developing stage. Transcriptome analysis demonstrated that Oslec1 mutation promoted photosynthesis and altered diverse hormonal pathways and stress response contributing to seed dormancy. Further, genome-wide identification of OsLEC1 binding sites demonstrated that OsLEC1 directly bound to genes involved in photosynthesis, photomorphogenesis, as well as abscisic acid (ABA) and gibberellin (GA) pathways, in seed maturation. We illustrated an OsLEC1-controlling gene network during seed development, including the interconnection between photosynthesis and ABA/GA biosynthesis/signalling. Our findings suggested that OsLEC1 is an inhibitor of photosynthesis during embryo development to promote rice seed maturation. This study would provide new understanding for the OsLEC1 regulatory mechanisms on photosynthesis in the monocot seed development.


2021 ◽  
Vol 25 (04) ◽  
pp. 777-785
Author(s):  
Jingai Tan

Rice seed development involves an intricate regulatory network that directly determines seed size and weight. Long noncoding RNAs (lncRNAs) have been defined as key regulators of gene expression involved in diverse biological processes. However, the function of lncRNAs in rice seed development is still poorly understood. We performed paired-end RNA sequencing of Nipponbare rice at 5, 10 and 15 DPA (days post anthesis) in two different environments (early and middle-season rice). A total of 382 lncRNAs were detected as differentially expressed among these stages, including 344 and 307 lncRNAs in early and middle-season rice, respectively, and 70.42% (269 of 382) of the lncRNAs were found in both environments. The results showed that environment had little effect on the expression of lncRNAs. Furthermore, there were 127, 172, and 31 DElncs (differentially expressed lncRNAs) and 154, 140, and 59 DElncs in early and middle-season rice, respectively, in comparisons of 10_DPA vs 5_DPA, 15_DPA vs 5_DPA and 15_DPA vs 10_DPA. This result indicated that the number and expression level of lncRNAs at 5 DAP were significantly different from those at 10 DAP and 15 DAP. Furthermore, GO pathway analysis of cis target genes of DElncs in 10_DPA vs 5_DPA and 15_DPA vs 5_DPA revealed that the significant GO pathways were extracellular region, nutrient reservoir activity and cell wall macromolecule catabolic process. Our study revealed dynamic expression of lncRNAs in three stages and systematically explored the differences in lncRNAs between early and middle-season rice, which could provide a valuable resource for future high-yield breeding. © 2021 Friends Science Publishers© 2021 Friends Science Publishers© 2021 Friends Science Publishers© 2021 Friends Science Publishers© 2021 Friends Science Publishers© 2021 Friends Science Publishers© 2021 Friends Science Publishers© 2021 Friends Science Publishers© 2021 Friends Science Publishers© 2021 Friends Science Publishers© 2021 Friends Science Publishers© 2021 Friends Science Publishers© 2021 Friends Science Publishers© 2021 Friends Science Publishers© 2021 Friends Science Publishers© 2021 Friends Science Publishers© 2021 Friends Science Publishers© 2021 Friends Science Publishers© 2021 Friends Science Publishers© 2021 Friends Science Publishers© 2021 Friends Science Publishers© 2021 Friends Science Publishers© 2021 Friends Science Publishers© 2021 Friends Science Publishers © 2021 Friends Science Publishers© 2021 Friends Science Publishers© 2021 Friends Science Publishers© 2021 Friends Science Publishers© 2021 Friends Science Publishers© 2021 Friends Science Publishers© 2021 Friends Science Publishers©


2018 ◽  
Vol 28 (1) ◽  
pp. 72-81 ◽  
Author(s):  
Sujittra Tejakhod ◽  
Richard H. Ellis

AbstractThe resilience of seed quality in rice (Oryza sativaL.) to flooding was investigated. Pot-grown plants of thejaponicacv. Gleva, theindicacv. IR64, and the introgressed line IR64-Sub1 were submerged in water, to simulate flooding, for 3‒5 days at different stages of seed development and maturation. Mean seed weight, pre-harvest sprouting, ability to germinate, and subsequent longevity in air-dry storage were assessed. Whereas seed quality in both IR64 and IR64-Sub1 was resilient to submergence, in Gleva the longer the duration of submergence and the later in development when plants were submerged the greater the pre-harvest sprouting. Thousand seed dry weight was reduced more by submergence in Gleva than IR64 or IR64-Sub1. At harvest maturity, few pre-harvest sprouted seeds were able to germinate upon rehydration after desiccation to 11‒12% moisture content. Seed longevity of the non-sprouted seed fraction in air-dry hermetic storage (40°C, 15% moisture content) was not affected greatly by submergence, but longevity of thejaponicarice was less than that of theindicarices due to the former's steeper seed survival curves. Longevity of the twoindicarices was predicted well by the seed viability equation and previously published estimates of viability constants for rice. The greater dormancy of IR64 and IR64-Sub1, compared with Gleva, enhanced resilience to pre-harvest sprouting and reduced thousand seed dry weight from plant submergence. There was little or no effect of plant submergence on subsequent air-dry storage longevity of non-sprouted seeds in any genotype.


2016 ◽  
Vol 87 (3) ◽  
pp. 305-317 ◽  
Author(s):  
Xiaolong Huang ◽  
Zhanhua Lu ◽  
Xin Wang ◽  
Yidan Ouyang ◽  
Wei Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document