scholarly journals $\Delta T$ and the Tidal Acceleration of the Lunar Motion from Eclipses Observed at Plural Sites

2004 ◽  
Vol 56 (5) ◽  
pp. 879-885 ◽  
Author(s):  
Kiyotaka Tanikawa ◽  
Mitsuru Sôma
Author(s):  
David M. Wittman

Having developed a framework for subsuming gravity into relativity, we examine how gravity behaves as a function of the source mass (Earth, Sun, etc.) and distance from that sourcemass.We develop Newton’s inverse‐square law of gravity, and we examine the consequences in terms of acceleration fields, potentials, escape velocities, and surface gravity. Chapter 17 will build on these ideas to show how orbits are used to probe gravity throughout the universe.We also develop a tool for exposing variations in the acceleration field: the tidal acceleration field in any region is defined as the acceleration field in that region minus the average acceleration. This enables us to restate Newton’s lawof gravity as: the acceleration arrows surrounding any point show a net convergence that is proportional to the density of mass at that point. Chapter 18 will use this to develop a frame‐independent law of gravity.


The most precise way of estimating the dissipation of tidal energy in the oceans is by evaluating the rate at which work is done by the tidal forces and this quantity is completely described by the fundamental harmonic in the ocean tide expansion that has the same degree and order as the forcing function. The contribution of all other harmonics to the work integral must vanish. These harmonics have been estimated for the principal M 2 tide using several available numerical models and despite the often significant difference in the detail of the models, in the treatment of the boundary conditions and in the way dissipating forces are introduced, the results for the rate at which energy is dissipated are in good agreement. Equivalent phase lags, representing the global ocean-solid Earth response to the tidal forces and the rates of energy dissipation have been computed for other tidal frequencies, including the atmospheric tide, by using available tide models, age of tide observations and equilibrium theory. Orbits of close Earth satellites are periodically perturbed by the combined solid Earth and ocean tide and the delay of these perturbations compared with the tide potential defines the same terms as enter into the tidal dissipation problem. They provide, therefore, an independent estimate of dissipation. The results agree with the tide calculations and with the astronomical estimates. The satellite results are independent of dissipation in the Moon and a comparison of astronomical, satellite and tidal estimates of dissipation permits a separation of energy sinks in the solid Earth, the Moon and in the oceans. A precise separation is not yet possible since dissipation in the oceans dominates the other two sinks: dissipation occurs almost exclusively in the oceans and neither the solid Earth nor the Moon are important energy sinks. Lower limits to the Q of the solid Earth can be estimated by comparing the satellite results with the ocean calculations and by comparing the astronomical results with the latter. They result in Q > 120. The lunar acceleration n , the Earth’s tidal acceleration O T and the total rate of energy dissipation E estimated by the three methods give astronomical based estimate —1.36 —28±3 —7.2 ± 0.7 4.1±0.4 satellite based estimate —1.03 —24 ±5 — 6.4 ± 1.5 3.6±0.8 numerical tide model — 1.49 —30 ±3 —7.5± 0.8 4.5±0.5 The mean value for O T corresponds to an increase in the length of day of 2.7 ms cy -1 . The non-tidal acceleration of the Earth is (1.8 ± 1.0) 10 -22 s ~2 , resulting in a decrease in the length of day of 0.7 ± 0.4 ms cy -1 and is barely significant. This quantity remains the most unsatisfactory of the accelerations. The nature of the dissipating mechanism remains unclear but whatever it is it must also control the phase of the second degree harmonic in the ocean expansion. It is this harmonic that permits the transfer of angular momentum from the Earth to the Moon but the energy dissipation occurs at frequencies at the other end of the tide’s spatial spectrum. The efficacity of the break-up of the second degree term into the higher modes governs the amount of energy that is eventually dissipated. It appears that the break-up is controlled by global ocean characteristics such as the ocean­-continent geometry and sea floor topography. Friction in a few shallow seas does not appear to be as important as previously thought: New estimates for dissipation in the Bering Sea being almost an order of magnitude smaller than earlier estimates. If bottom friction is important then it must be more uniformly distributed over the world's continental shelves. Likewise, if turbulence provides an important dissipation mechanism it must be fairly uniformly distributed along, for example, coastlines or along continental margins. Such a global distribution of the dissipation makes it improbable that there has been a change in the rate of dissipation during the last few millennium as there is no evidence of changes in ocean volume, or ocean geometry or sea level beyond a few metres. It also suggests that the time scale problem can be resolved if past ocean-continent geometries led to a less efficient breakdown of the second degree harmonic into higher degree harmonics.


2021 ◽  
Vol 11 (18) ◽  
pp. 8624
Author(s):  
Klaus Paschek ◽  
Arthur Roßmann ◽  
Michael Hausmann ◽  
Georg Hildenbrand

Volcanism powered by tidal forces inside celestial bodies can provide enough energy to keep important solvents for living systems in the liquid phase. A prerequisite to calculate such tidal interactions and consequences is depending on simulations for tidal accelerations in a multi-body system. Unfortunately, from measurements in many extrasolar planetary systems, only few physical and orbital parameters are well-known enough for investigated celestial bodies. For calculating tidal acceleration vectors under missing most orbital parameter exactly, a simulation method is developed that is only based on a few basic parameters, easily measurable even in extrasolar planetary systems. Such a method as the one presented here allows finding a relation between the tidal acceleration vectors and potential heating inside celestial objects. Using the values and results of our model approach to our solar system as a “gold standard” for feasibility allowed us to classify this heating in relation to different forms of volcanism. This “gold standard” approach gave us a classification measure for the relevance of tidal heating in other extrasolar systems with a reduced availability of exact physical parameters. We help to estimate conditions for the identification of potential candidates for further sophisticated investigations by more complex established methods such as viscoelastic multi-body theories. As a first example, we applied the procedures developed here to the extrasolar planetary system TRAPPIST-1 as an example to check our working hypothesis.


1969 ◽  
Vol 1 (1) ◽  
pp. 127-129
Author(s):  
J. Derral Mulholland
Keyword(s):  

1997 ◽  
Vol 165 ◽  
pp. 205-214
Author(s):  
Kenneth Nordtvedt ◽  
David Vokrouhlický

AbstractLunar motion serves for a number of important tests of the relativity theory. Although the final quantitative results come out from the direct numerical treatment of the lunar laser ranging data, the analytical solutions yield important keys for understanding sensitivity of the lunar motion on diverse effects. In the last few years, important relativistic phenomena, notably the equivalence principle violation and the preferred direction effects, have been reexamined using detailed Hill-Brown type theories. Surprising amplification of the former effect, indicated also from the numerical tests, has been explained by intricate coupling with the tidal deformation of the lunar orbit. Similar treatment proved that the lunar motion hides potentially a high-quality test of the preferred frame effects. In both cases, fundamental resonances of the problem cause singular amplification of the effects for particular lunar-like orbits.


1986 ◽  
Vol 114 ◽  
pp. 407-410
Author(s):  
Bahram Mashhoon

A summary of the main relativistic effects in the motion of the Moon is presented. The results are based on the application of a novel approach to the restricted three-body problem in general relativity to the lunar motion. It is shown that the rotation of the Sun causes a secular acceleration in the relative Earth-Moon motion. This might appear to be due to a temporal “variation” of the gravitational constant.


Sign in / Sign up

Export Citation Format

Share Document