scholarly journals Energy estimation of high-energy particles associated with the SS 433/W 50 system through radio observation at 1.4 GHz

Author(s):  
Haruka Sakemi ◽  
Rikuto Omae ◽  
Takumi Ohmura ◽  
Mami Machida

Abstract The radio nebula W 50 is a unique object interacting with the jets of the microquasar SS 433. The SS 433/W 50 system is a good target for investigating the energy of cosmic-ray particles accelerated by galactic jets. We report observations of the radio nebula W 50 conducted with the National Science Foundation’s Karl G. Jansky Very Large Array in the L band (1.0–2.0 GHz). We investigate the secular change of W 50 on the basis of the observations in 1984, 1996, and 2017, and find that most of its structures were stable for 33 yr. We revise the upper-limit velocity of the eastern terminal filament by half to 0.023 c, assuming a distance of 5.5 kpc. We also analyze observational data from the Arecibo Observatory 305 m telescope and identify the H i cavity around W 50 in the velocity range 33.77–55.85 km s−1. From this result, we estimate the maximum energy of the cosmic-ray protons accelerated by the jet terminal region to be above 1015.5 eV. We also use the luminosity of the gamma-rays in the range 0.5–10 GeV to estimate the total energy of accelerated protons below 5.2 × 1048 erg.

2010 ◽  
Vol 25 (20) ◽  
pp. 3953-3964
Author(s):  
A. GERANIOS ◽  
D. KOUTSOKOSTA ◽  
O. MALANDRAKI ◽  
H. ROSAKI-MAVROULI

Ultra-High Energy Cosmic Rays (UHECR) (E ≥ 5 × 1019 eV ) are detected through Extensive Air Showers that are created when a primary cosmic ray particle interacts with the atmosphere of the Earth. The energy of the primary particle can be estimated experimentally based on simulations. In this paper, we attempt to estimate the energy of UHECR gamma ray photons by applying a Monte Carlo simulation code and we compare the results with the ones derived in our previous papers for hadron initiated showers. The scenario of simulations is adapted to the P. Auger Observatory site.


2010 ◽  
Vol 25 (12) ◽  
pp. 2561-2571 ◽  
Author(s):  
A. GERANIOS ◽  
D. KOUTSOKOSTA ◽  
A. MASTICHIADIS ◽  
O. MALANDRAKI ◽  
H. ROSAKI-MAVROULI ◽  
...  

Ultra-High Energy Cosmic Rays (E ≥ 5 ×1019 eV ) are detected through Extensive Air Showers that are created when a primary cosmic ray particle interacts with the atmosphere of the Earth. The energy of the primary particle can be estimated experimentally based on simulations. In this paper we attempt to estimate the energy of UHECR hadrons ( He, Li, C, Fe ) by applying a Monte Carlo simulation code and we compare the results with the ones derived in our previous paper for proton initiated showers. The scenario of simulations is adapted to the P. Auger Observatory site.


2020 ◽  
Vol 641 ◽  
pp. A29
Author(s):  
Claire Guépin

High-energy neutrino flares are interesting prospective counterparts to photon flares since their detection would guarantee the presence of accelerated hadrons within a source, in addition to providing precious information about cosmic-ray acceleration and interactions, thus impacting the subsequent modeling of non-thermal emissions in explosive transients. In these sources, photomeson production can be efficient, producing a large amount of secondary particles, such as charged pions and muons, that decay and produce high-energy neutrinos. Before their decay, secondary particles can experience energy losses and acceleration, which can impact high-energy neutrino spectra and thus affect their detectability. In this work, we focus on the impact of secondary acceleration. We consider a one zone model, characterized mainly by a variability timescale tvar, luminosity Lbol, and bulk Lorentz factor Γ. The mean magnetic field B is deduced from these parameters. The photon field is modeled by a broken power-law. This generic model allows us to systematically evaluate the maximum energy of high-energy neutrinos in the parameter space of explosive transients and shows that it could be strongly affected by secondary acceleration for a large number of source categories. In order to determine the impact of secondary acceleration on the high-energy neutrino spectrum and, in particular, on its peak energy and flux, we complement these estimates with several case studies. We show that secondary acceleration can increase the maximum neutrino flux and produce a secondary peak at the maximum energy in the case of efficient acceleration. Secondary acceleration could, therefore, enhance the detectability of very-high-energy neutrinos that would be the target of next generation neutrino detectors, such as KM3NeT, IceCube-Gen2, POEMMA, or GRAND.


2019 ◽  
Vol 487 (1) ◽  
pp. 168-180 ◽  
Author(s):  
Enrico Peretti ◽  
Pasquale Blasi ◽  
Felix Aharonian ◽  
Giovanni Morlino

Abstract The high rate of star formation and supernova explosions of starburst galaxies make them interesting sources of high-energy radiation. Depending on the level of turbulence present in their interstellar medium, the bulk of cosmic rays produced inside starburst galaxies may lose most of their energy before escaping, thereby making these sources behave as calorimeters, at least up to some maximum energy. Contrary to previous studies, here we investigate in detail the conditions under which cosmic ray confinement may be effective for electrons and nuclei and we study the implications of cosmic ray confinement in terms of multifrequency emission from starburst nuclei and production of high-energy neutrinos. The general predictions are then specialized to three cases of active starbursts, namely, M82, NGC 253, and Arp220. Both primary and secondary electrons, as well as electron–positron pairs produced by gamma-ray absorption inside starburst galaxies are taken into account. Electrons and positrons produced as secondary products of hadronic interactions are found to be responsible for most of the emission of leptonic origin. In particular, synchrotron emission of very high energy secondary electrons produces an extended emission of hard X-rays that represents a very interesting signature of hadronic process in starburst galaxies, potentially accessible to current and future observations in the X-ray band. A careful understanding of both the production and absorption of gamma-rays in starburst galaxies is instrumental to the assessment of the role of these astrophysical sources as sources of high-energy astrophysical neutrinos.


2020 ◽  
Vol 639 ◽  
pp. A80
Author(s):  
Xiao-Na Sun ◽  
Rui-Zhi Yang ◽  
Yun-Feng Liang ◽  
Fang-Kun Peng ◽  
Hai-Ming Zhang ◽  
...  

We report the detection of high-energy γ-ray signal towards the young star-forming region, W40. Using 10-yr Pass 8 data from the Fermi Large Area Telescope (Fermi-LAT), we extracted an extended γ-ray excess region with a significance of ~18σ. The radiation has a spectrum with a photon index of 2.49 ± 0.01. The spatial correlation with the ionized gas content favors the hadronic origin of the γ-ray emission. The total cosmic-ray (CR) proton energy in the γ-ray production region is estimated to be the order of 1047 erg. However, this could be a small fraction of the total energy released in cosmic rays (CRs) by local accelerators, presumably by massive stars, over the lifetime of the system. If so, W40, together with earlier detections of γ-rays from Cygnus cocoon, Westerlund 1, Westerlund 2, NGC 3603, and 30 Dor C, supports the hypothesis that young star clusters are effective CR factories. The unique aspect of this result is that the γ-ray emission is detected, for the first time, from a stellar cluster itself, rather than from the surrounding “cocoons”.


2019 ◽  
Vol 209 ◽  
pp. 01007
Author(s):  
Francesco Nozzoli

Precision measurements by AMS of the fluxes of cosmic ray positrons, electrons, antiprotons, protons as well as their rations reveal several unexpected and intriguing features. The presented measurements extend the energy range of the previous observations with much increased precision. The new results show that the behavior of positron flux at around 300 GeV is consistent with a new source that produce equal amount of high energy electrons and positrons. In addition, in the absolute rigidity range 60–500 GV, the antiproton, proton, and positron fluxes are found to have nearly identical rigidity dependence and the electron flux exhibits different rigidity dependence.


Author(s):  
Maria Concetta Maccarone ◽  
Giovanni La Rosa ◽  
Osvaldo Catalano ◽  
Salvo Giarrusso ◽  
Alberto Segreto ◽  
...  

AbstractUVscope is an instrument, based on a multi-pixel photon detector, developed to support experimental activities for high-energy astrophysics and cosmic ray research. The instrument, working in single photon counting mode, is designed to directly measure light flux in the wavelengths range 300-650 nm. The instrument can be used in a wide field of applications where the knowledge of the nocturnal environmental luminosity is required. Currently, one UVscope instrument is allocated onto the external structure of the ASTRI-Horn Cherenkov telescope devoted to the gamma-ray astronomy at very high energies. Being co-aligned with the ASTRI-Horn camera axis, UVscope can measure the diffuse emission of the night sky background simultaneously with the ASTRI-Horn camera, without any interference with the main telescope data taking procedures. UVscope is properly calibrated and it is used as an independent reference instrument for test and diagnostic of the novel ASTRI-Horn telescope.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Y. Miyoshi ◽  
K. Hosokawa ◽  
S. Kurita ◽  
S.-I. Oyama ◽  
Y. Ogawa ◽  
...  

AbstractPulsating aurorae (PsA) are caused by the intermittent precipitations of magnetospheric electrons (energies of a few keV to a few tens of keV) through wave-particle interactions, thereby depositing most of their energy at altitudes ~ 100 km. However, the maximum energy of precipitated electrons and its impacts on the atmosphere are unknown. Herein, we report unique observations by the European Incoherent Scatter (EISCAT) radar showing electron precipitations ranging from a few hundred keV to a few MeV during a PsA associated with a weak geomagnetic storm. Simultaneously, the Arase spacecraft has observed intense whistler-mode chorus waves at the conjugate location along magnetic field lines. A computer simulation based on the EISCAT observations shows immediate catalytic ozone depletion at the mesospheric altitudes. Since PsA occurs frequently, often in daily basis, and extends its impact over large MLT areas, we anticipate that the PsA possesses a significant forcing to the mesospheric ozone chemistry in high latitudes through high energy electron precipitations. Therefore, the generation of PsA results in the depletion of mesospheric ozone through high-energy electron precipitations caused by whistler-mode chorus waves, which are similar to the well-known effect due to solar energetic protons triggered by solar flares.


2021 ◽  
Vol 502 (4) ◽  
pp. 5821-5838
Author(s):  
Ottavio Fornieri ◽  
Daniele Gaggero ◽  
Silvio Sergio Cerri ◽  
Pedro De La Torre Luque ◽  
Stefano Gabici

ABSTRACT We present a comprehensive study about the phenomenological implications of the theory describing Galactic cosmic ray scattering on to magnetosonic and Alfvénic fluctuations in the GeV−PeV domain. We compute a set of diffusion coefficients from first principles, for different values of the Alfvénic Mach number and other relevant parameters associated with both the Galactic halo and the extended disc, taking into account the different damping mechanisms of turbulent fluctuations acting in these environments. We confirm that the scattering rate associated with Alfvénic turbulence is highly suppressed if the anisotropy of the cascade is taken into account. On the other hand, we highlight that magnetosonic modes play a dominant role in Galactic confinement of cosmic rays up to PeV energies. We implement the diffusion coefficients in the numerical framework of the dragon code, and simulate the equilibrium spectrum of different primary and secondary cosmic ray species. We show that, for reasonable choices of the parameters under consideration, all primary and secondary fluxes at high energy (above a rigidity of $\simeq 200 \, \mathrm{GV}$) are correctly reproduced within our framework, in both normalization and slope.


2021 ◽  
Vol 366 (6) ◽  
Author(s):  
Hidetoshi Sano ◽  
Yasuo Fukui

AbstractWe review recent progress in elucidating the relationship between high-energy radiation and the interstellar medium (ISM) in young supernova remnants (SNRs) with ages of ∼2000 yr, focusing in particular on RX J1713.7−3946 and RCW 86. Both SNRs emit strong nonthermal X-rays and TeV $\gamma $ γ -rays, and they contain clumpy distributions of interstellar gas that includes both atomic and molecular hydrogen. We find that shock–cloud interactions provide a viable explanation for the spatial correlation between the X-rays and ISM. In these interactions, the supernova shocks hit the typically pc-scale dense cores, generating a highly turbulent velocity field that amplifies the magnetic field up to 0.1–1 mG. This amplification leads to enhanced nonthermal synchrotron emission around the clumps, whereas the cosmic-ray electrons do not penetrate the clumps. Accordingly, the nonthermal X-rays exhibit a spatial distribution similar to that of the ISM on the pc scale, while they are anticorrelated at sub-pc scales. These results predict that hadronic $\gamma $ γ -rays can be emitted from the dense cores, resulting in a spatial correspondence between the $\gamma $ γ -rays and the ISM. The current pc-scale resolution of $\gamma $ γ -ray observations is too low to resolve this correspondence. Future $\gamma $ γ -ray observations with the Cherenkov Telescope Array will be able to resolve the sub-pc-scale $\gamma $ γ -ray distribution and provide clues to the origin of these cosmic $\gamma $ γ -rays.


Sign in / Sign up

Export Citation Format

Share Document