scholarly journals Jasmonate-Dependent and COI1-Independent Defense Responses Against Sclerotinia sclerotiorum in Arabidopsis thaliana: Auxin is Part of COI1-Independent Defense Signaling

2011 ◽  
Vol 52 (11) ◽  
pp. 1941-1956 ◽  
Author(s):  
Henrik U. Stotz ◽  
Yusuke Jikumaru ◽  
Yukihisa Shimada ◽  
Eriko Sasaki ◽  
Nadja Stingl ◽  
...  
2021 ◽  
Vol 12 ◽  
Author(s):  
Huizhen Hu ◽  
Yiwei Tang ◽  
Jian Wu ◽  
Feizhi Chen ◽  
Yidan Yang ◽  
...  

The plant mediator is a highly conserved protein complex that interacts with transcription factors (TFs) and RNA polymerase II (RNAP II) to relay regulatory information during transcription. Plant immune response is one of the biological processes that is orchestrated by this regulatory mechanism. Brassica napus, an important oil crop, is severely attacked by a devastating disease Sclerotinia stem rot. Here, we explored broad-spectrum disease resistant roles of B. napus mediator subunit 16 (BnMED16) and its host defense mechanism against fugal pathogen Sclerotinia sclerotiorum. We found that BnMED16 expression was significantly increased by S. sclerotiorum infection, and its homologous overexpression resulted in rapid and comprehensive defense responses from the beginning to the end. This affected signal transduction with multiple channels including pathogen recognition, intracellular Ca2+ concentration, reactive oxygen species (ROS) accumulation and clearance, and activation of mitogen-activated protein kinase (MAPK) signaling cascades initially. Subsequently, pathogen-/defense-related genes and hormone-responsive pathways were highly activated, which resulted in enhanced cell wall and secretion of defense proteases. Furthermore, the biochemical analysis showed that BnMED16 interacts with BnMED25 and BnWRKY33. Additionally, BnMED25 also interacts with TFs BnMYC2, BnCOI1, and BnEIN3 of the JA/ET signal transduction pathway. Taken together, we proposed a hypothetical model that BnMED16 confers S. sclerotiorum resistance by enhancing BnMED25-mediated JA/ET defense pathways and BnWRKY33-activated defense signaling in B. napus. The BnMED16 overexpressing lines with enhanced broad-spectrum disease resistance could be useful for breeding Sclerotinia-resistant oilseed rape varieties, as well as serving as basis for further strategy development in resistance breeding.


2021 ◽  
Author(s):  
Jaebeom Lim ◽  
Jinouk Yeon ◽  
Sang-Kee Song ◽  
Hankuil Yi

Abstract Toll/interleukin -1 receptor (TIR) domains, which have NAD+ cleavage activity, are used as signaling modules in NOD-like receptors for defense responses. It has been shown that TIR domains not only form homo- or heterodimers with TIR domain-containing proteins but also interact with various proteins. A previous study showed that overexpression of Arabidopsis thaliana (Arabidopsis) AtTX14, encoding an N-terminal TIR domain and a C-terminal domain with unknown function, resulted in dwarfism and constitutive defense signaling or autoimmunity. Transgenic Arabidopsis overexpressing AtTX14 displays enhanced defense responses and associated dwarf phenotypes at 28 °C compared with those at 22 °C, which differs from other mutant or transgenic Arabidopsis with constitutive defense responses. We found that AtTX14 is alternatively spliced to encode three different proteins, and the TIR domain itself can induce autoimmunity and elevated defense responses to the bacterial pathogen Pseudomonas syringae pv. tomato. In addition, we revealed that the transcription of AtTX14 is regulated by a positive feedback mechanism. With transient overexpression of three AtTX14 protein forms in tobacco leaves, providing a heterologous system free from the positive feedback of AtTX14 in Arabidopsis, we demonstrated that expression of a splicing variant encoding the TIR domain-only protein is sufficient to activate defense signaling. A deeper understanding of interaction networks involving AtTX14 will broaden our knowledge on how plant defense signaling is regulated in response to pathogen infection and ambient temperature changes.


2018 ◽  
Vol 31 (3) ◽  
pp. 311-322 ◽  
Author(s):  
Shune Wang ◽  
Ying Zheng ◽  
Chun Gu ◽  
Chan He ◽  
Mengying Yang ◽  
...  

Bacillus cereus AR156 (AR156) is a plant growth–promoting rhizobacterium capable of inducing systemic resistance to Pseudomonas syringae pv. tomato in Arabidopsis thaliana. Here, we show that, when applied to Arabidopsis leaves, AR156 acted similarly to flg22, a typical pathogen-associated molecular pattern (PAMP), in initiating PAMP-triggered immunity (PTI). AR156-elicited PTI responses included phosphorylation of MPK3 and MPK6, induction of the expression of defense-related genes PR1, FRK1, WRKY22, and WRKY29, production of reactive oxygen species, and callose deposition. Pretreatment with AR156 still significantly reduced P. syringae pv. tomato multiplication and disease severity in NahG transgenic plants and mutants sid2-2, jar1, etr1, ein2, npr1, and fls2. This suggests that AR156-induced PTI responses require neither salicylic acid, jasmonic acid, and ethylene signaling nor flagella receptor kinase FLS2, the receptor of flg22. On the other hand, AR156 and flg22 acted in concert to differentially regulate a number of AGO1-bound microRNAs that function to mediate PTI. A full-genome transcriptional profiling analysis indicated that AR156 and flg22 activated similar transcriptional programs, coregulating the expression of 117 genes; their concerted regulation of 16 genes was confirmed by real-time quantitative polymerase chain reaction analysis. These results suggest that AR156 activates basal defense responses to P. syringae pv. tomato in Arabidopsis, similarly to flg22.


2003 ◽  
Vol 16 (5) ◽  
pp. 398-404 ◽  
Author(s):  
Denny G. Mellersh ◽  
Michèle C. Heath

Seventeen accessions of Arabidopsis thaliana inoculated with the cowpea rust fungus Uromyces vignae exhibited a variety of expressions of nonhost resistance, although infection hypha growth typically ceased before the formation of the first haustorium, except in Ws-0. Compared with wild-type plants, there was no increased fungal growth in ndr1 or eds1 mutants defective in two of the signal cascades regulated by the major class of Arabidopsis host resistance genes. However, in the Col-0 background, infection hyphae of U. vignae and two other rust fungi were longer in sid2 mutants defective in an enzyme that synthesizes salicylic acid (SA), in npr1 mutants deficient in a regulator of the expression of SA-dependent pathogenesis related (PR) genes, and in NahG plants containing a bacterial salicylate hydroxylase. Infection hyphae of U. vignae and U. appendiculatus but not of Puccinia helianthi were also longer in jar1 mutants, which are defective in the jasmonic acid defense signaling pathway. Nevertheless, haustorium formation increased only for the Uromyces spp. and only in sid2 mutants or NahG plants. Rather than the hypersensitive cell death that usually accompanies haustorium formation in nonhost plants, Arabidopsis typically encased haustoria in calloselike material. Growing fungal colonies of both Uromyces spp., indicative of a successful biotrophic relationship between plant and fungus, formed in NahG plants, but only U. vignae formed growing colonies in the sid2 mutants and cycloheximide-treated wild-type plants. Growing colonies did not develop in NahG tobacco or tomato plants. These data suggest that nonhost resistance of Arabidopsis to rust fungi primarily involves the restriction of infection hypha growth as a result of defense gene expression. However, there is a subsequent involvement of SA but not SA-dependent PR genes in preventing the Uromyces spp. from forming the first haustorium and establishing a sufficient biotrophic relationship to support further fungal growth. The U. vignae-Arabidopsis combination could allow the application of the powerful genetic capabilities of this model plant to the study of compatibility as well as nonhost resistance to rust fungi.


2014 ◽  
Vol 86 (4-5) ◽  
pp. 495-511 ◽  
Author(s):  
Huajian Zhang ◽  
Qun Wu ◽  
Shun Cao ◽  
Tongyao Zhao ◽  
Ling Chen ◽  
...  

2003 ◽  
Vol 34 (3) ◽  
pp. 351-362 ◽  
Author(s):  
Ana Cano-Delgado ◽  
Steven Penfield ◽  
Caroline Smith ◽  
Merryn Catley ◽  
Michael Bevan

Sign in / Sign up

Export Citation Format

Share Document