Phase equilibrium and trace-element modeling of the partial melting of basaltic rocks under low pressure: Implications for plagiogranite generation

Author(s):  
Xiao-Fei Xu ◽  
Long-Long Gou ◽  
Xiao-Ping Long ◽  
Yu-Hang Zhao ◽  
Feng Zhou

Abstract Phase equilibria and trace-element modeling using two previously reported basaltic bulk-rock compositions (samples D11 and 104-16), were carried out in this study, in order to better understand mechanism of low-pressure (LP) partial melting of mafic rocks and associated melt compositions. The T–MH2O pseudosections for both samples at three pressures (i.e. 0.5, 1.0 and 2.0 kbar) display that the H2O-stability field gradually increased with decreasing pressure within the T–MH2O range of 600–1100 °C and 0–12 mol.%. The H2O contents of 10, 5.0, and 0.5 mol.% were selected on the basis of the T–MH2O pseudosections to calculate P–T pseudosections over a P–T window of 0.1–3 kbar and 600–1100 °C, so that the reactions of both the H2O-fluxed and -absent meltings at LP conditions can be investigated. The solidus displays a negative or near-vertical P–T slope, and occurs between 710 and 900 °C at pressure between 0.1 and 3.0 kbar. LP melting of metabasites is attributed to the reactions of the hydrous mineral (hornblende and/or biotite) melting and anhydrous mineral (plagioclase, orthopyroxene, and augite) melting. The hydrous mineral melting is gradually replaced by anhydrous mineral melting as pressure decreasing, as the stability of hornblende decreases with falling pressure. With increasing temperature at a given pressure, the modeled melt compositions are expressed as progressions of the granite-granodiorite-gabbroic diorite fields for sample D11and granite-quartz monzonite-monzonite-gabbroic diorite fields for sample 104-16 on the total alkali–silica diagram. The modeled melts produced through the H2O-fluxed melting display higher Al2O3, CaO, MgO, and lower SiO2 and K2O than those formed by H2O-absent melting at the same P–T conditions. Furthermore, the modeled melts formed by H2O-absent melting, become richer in Al2O3, CaO, MgO, FeO, Na2O, but poorer in SiO2 and K2O as increasing water content. The results of trace-element modeling suggests that the nearly flat REE patterns of modeled bulk-rock composition are inherited by all the modeled melts, and the negative Eu anomalies and Sr depletion of the modeled melts gradually decrease as melting degree increases. Combined with the geochemical characteristics of natural oceanic plagiogranites, which have low K2O contents and flat or slightly LREE-depleted REE patterns, our results imply that a bulk-rock composition with low K2O (<0.17 wt.%) and slightly LREEs depletion is the most likely protolith composition (e.g. basalt D11) for plagiogranites, and the compositions of modeled melts formed by LP H2O-absent partial melting of the basalt D11 at relatively high temperatures (1000–1025 °C) are coincident with those of 1256D tonalites.

2021 ◽  
Author(s):  
Lisa Rummel ◽  
Boris Kaus ◽  
Tobias Baumann ◽  
Richard White ◽  
Nicolas Riel

The evolution of crustal magmatic systems is incompletely understood, as most studies are limited either by their temporal or spatial resolution. Exposed plutonic rocks represent the final stage of a long-term evolution punctuated by several magmatic events with different chemistry and generated under different mechanical conditions. Although the final state can be easily described, the nature of each magmatic pulse is more difficult to retrieve. This study presents a new method to investigate the compositional evolution of plutonic systems while considering thermal and mechanical processes. A thermomechanical code (MVEP2) extended by a semi-analytical dike/sill formation algorithm, is combined with a thermodynamic modelling approach (Perple_X) to investigate the feedback between petrology and mechanics. Melt is extracted to form dikes while depleting the source region. The evolving rock compositions are tracked on markers using a different phase diagram for each discrete bulk-rock composition. The rock compositional evolution is thus tracked with a high precision by means of a database with more than 58,000 phase diagrams. This database describes how density, melt fraction, chemical composition of melt and solid fractions and mineralogical assemblages change over crustal to uppermost mantle P-T conditions for a large range of rock compositions. Each bulk rock composition is composed of the 10 major oxides (SiO2-TiO2-Al2O3-Cr2O3-MgO-FeO-CaO-Na2O-K2O-H2O) including an oxygen buffer. The combined modelling approach is applied to study the chemical evolution of the crust during arc magmatism and related melt extraction and magma mixing processes. Basaltic sills are periodically injected into the crust to model heat/magma influx from the mantle. We find that accumulated sills turn into long-lived mush chambers when using a lower rock cohesion or assuming a higher intrusion depth. Associated partial melting of crustal host rocks occurs around densely distributed dikes and sills. High silica rocks (e.g. granites) are generated by partial melting of the host rocks, melt segregation within dikes, and from fractional crystallization of basalts. Although the volume of these rocks is relatively small in our models compared to rocks with a mafic to intermediate composition, they provide important information about the processes of magma differentiation within arc continental crust.


2020 ◽  
Vol 61 (2) ◽  
Author(s):  
Lisa Rummel ◽  
Boris J P Kaus ◽  
Tobias S Baumann ◽  
Richard W White ◽  
Nicolas Riel

Abstract The evolution of crustal magmatic systems is incompletely understood, as most studies are limited either by their temporal or spatial resolution. Exposed plutonic rocks represent the final stage of a long-term evolution punctuated by several magmatic events with different chemistry and generated under different mechanical conditions. Although the final state can be easily described, the nature of each magmatic pulse is more difficult to retrieve. This study presents a new method to investigate the compositional evolution of plutonic systems while considering thermal and mechanical processes. A thermomechanical code (MVEP2) extended by a semi-analytical dike/sill formation algorithm, is combined with a thermodynamic modelling approach (Perple_X) to investigate the feedback between petrology and mechanics. Melt is extracted to form dikes while depleting the source region. The evolving rock compositions are tracked on markers using a different phase diagram for each discrete bulk-rock composition. The rock compositional evolution is thus tracked with a high precision by means of a database with more than 58 000 phase diagrams. This database describes how density, melt fraction, chemical composition of melt and solid fractions and mineralogical assemblages change over crustal to uppermost mantle P–T conditions for a large range of rock compositions. Each bulk rock composition is composed of the 10 major oxides (SiO2–TiO2–Al2O3–Cr2O3–MgO–FeO–CaO–Na2O–K2O–H2O) including an oxygen buffer. The combined modelling approach is applied to study the chemical evolution of the crust during arc magmatism and related melt extraction and magma mixing processes. Basaltic sills are periodically injected into the crust to model heat/magma influx from the mantle. We find that accumulated sills turn into long-lived mush chambers when using a lower rock cohesion or assuming a higher intrusion depth. Associated partial melting of crustal host rocks occurs around densely distributed dikes and sills. High silica rocks (e.g. granites) are generated by partial melting of the host rocks, melt segregation within dikes, and from fractional crystallization of basalts. Although the volume of these rocks is relatively small in our models compared to rocks with a mafic to intermediate composition, they provide important information about the processes of magma differentiation within arc continental crust.


1978 ◽  
Vol 15 (10) ◽  
pp. 1669-1672 ◽  
Author(s):  
B.N. Church

New localities of shackanite and related analcite-bearing lavas have been discovered in a broad field of early Tertiary phonolite and mafic phonolite in south-central British Columbia. The development of primary and secondary analcite in these rocks is probably the result of cooling lava during and shortly after extrusion.The possibility of leucite to analcite transformation in Daly's shackanite is unlikely because of lack of petrographic evidence and a preponderance of Na2O over K2O in bulk rock composition. It is also unlikely that analcite, and particularly groundmass analcite, crystallized at great depth and was transported to surface during eruption.


2017 ◽  
Vol 43 (5) ◽  
pp. 2667
Author(s):  
E. Mposkos ◽  
I. Baziotis

The carbonate-bearing metaperidotite from Sidironero Complex, north of the Xanthi town is composed primarily of olivine and orthopyroxene megacrysts and of Ti-clinohumite, tremolite, chlorite, dolomite, magnesite, talc, antigorite and spinel group minerals. The metaperidotite underwent a prograde HP metamorphism probably isofacial with the neighboring amphibolitized eclogites. Calculated P-T and P(T)-XCO2 phase diagram sections (pseudosections) for the bulk rock composition showed that XCO2 in the fluid phase was extremely low (≤0.008) at the first stages of the metamorphism and increased up to 0.022 at the peak P-T conditions ~1.5 GPa and 690 0C. The prograde metamorphism probably started from a hydrated and carbonated assemblage including talc+chlorite+magnesite+dolomite and proceeded with tremolite and antigorite formation before olivine growth, and orthopyroxene formation after olivine growth (Ol-1). Matrix dolomite, breakdown of chlorite (Chl-1) to Cr spinel+olivine and of Ti-clinohumite to olivine+Mg-ilmenite occurred during decompression. The P-T path is constrained by the absence of clinopyroxene in the metaperidotite.


F, Cl and Br contents of tholeiitic volcanic glasses dredged along the Mid-Atlantic Ridge from 53° to 28° N, including the transect over the Azores Plateau, are reported. The halogen variations parallel those of 87 Sr/ 86 Sr, La/Sm or other incompatible elements of varying volatility. The latitudinal halogen variation pattern is not obliterated if only Mg-rich lavas are considered. Variations in extent of low-pressure fractional crystallization or partial melting conditions do not appear to be the primary cause of the halogen variations. Instead, mantle-derived heterogeneities in halogens, with major enrichments in the mantle beneath the Azores, are suggested. The Azores platform is not only a ‘hotspot’ but also a ‘wetspot’, which may explain the unusually intense Azores volcanic activity. The magnitude of the halogen and incompatible element enrichments beneath the Azores appear strongly dependent on the size of these anions and cations, but independent of relative volatility at low pressure. The large anions Cl and Br behave similarly to large cations Rb, Cs and Ba, and the smaller anion F similarly to Sr and P. Processes involving crystal and liquid (fluid and/or melt), CO 2 rather than H 2 O dominated, seem to have produced these largescale mantle heterogeneities. Geochemical ‘anomalies’ beneath the Azores are no longer apparent for coherent element pair ratios of similar ionic size. Values of such ‘unfractionated’ coherent trace element ratios provide an indication of the mantle composition and its nature before fractionation event (s) which produced the inferred isotopic and trace element heterogeneities apparently present beneath the North Atlantic. The relative trace element composition of this precursor mantle does not resemble that of carbonaceous chondrites except for refractory trace element pairs of similar ionic size. It is strongly depleted in halogens, and to a lesser extent in large alkali ions Rb and Cs relative to refractory Ba. These relative depletions are comparable within a factor of 5 to Ganapathy & Anders’s estimates for the bulk Earth, with the exception of Cs. There is also evidence for removal of phosphorus into the iron core during its formation. With the exception of San Miguel, alkali basalts from the Azores Islands appear to have been derived from the same mantle source as tholeiitic basalts from the ridge transect over the Azores Platform but by half as much degree of partial melting. The Azores subaerial basalts seem to have been partly degassed in Cl, Br and F, in decreasing order of intensity. A working model involving metasomatism from release of fluids at phase transformation during convective mantle overturns is proposed to explain the formation of mantle plumes or diapirs enriched in larger relative to smaller halogen and other incompatible trace elements. The model is ad hoc and needs testing. However, any other dynamical model accounting for the 400 -1000 km long gradients in incompatible trace elements, halogens and radiogenic isotopes along the Mid-Atlantic Ridge should, at some stage, require either (1) some variable extent of mixing or (2) differential migration of liquid relative to crystals followed by re-equilibration (or both), as a diffusion controlled mechanism over such large distances is clearly ruled out, given the age of the Earth.


1997 ◽  
Vol 61 (409) ◽  
pp. 835-843 ◽  
Author(s):  
Aral I. Okay

AbstractBlueschist-facies rocks with jadeite-K-feldspar-lawsonite paragenesis occur as exotic blocks in Miocene debris flows in the blueschist belt of northwest Turkey. The jadeite-K-feldspar rocks have a very fine grain size and although recrystallized locally retain a relict porphyritic volcanic texture. The former nepheline microphenocrysts, recognized from their characteristic shapes, are pseudomorphed by jadeite and K-feldspar, while the relict magmatic aegirine has rims of jadeite. The matrix of the rock consists of very fine-grained aggregates of jadeite, K-feldspar and lawsonite. In some blocks, jadeite makes up >60% of the mode. Jadeite, K-feldspar and lawsonite in the blocks are essentially pure end-member in composition. P-T estimates for these rocks are 8 ± 2 kbar and 300 ± 50°C. The preserved volcanic texture, relict aegirine and the bulk rock composition indicate that these rocks represent metamorphosed phonolites. The paragenesis in these rocks shows that jadeite-K-feldspar is a stable mineral pair in blueschist-facies P-T conditions.


2021 ◽  
Author(s):  
◽  
Jill Fernandes

<p>Scattered, scarce occurrences of garnet- and quartz-rich metamorphic rock, probably derived from Mn- and Fe-rich chert, occur within metamorphosed greywacke sequences worldwide. The metamorphism of such garnetiferous metacherts has not previously been investigated using modern thermodynamic forward modelling techniques due to the lack of appropriate, internally-consistent activity-composition (a–x) models for Mn-bearing minerals. The present study applies thermodynamic forward modelling using the recently-proposed a–x models of White et al. (2014) to investigate the metamorphism of garnetiferous metachert samples from the Southern Alps, New Zealand.  Pressure-temperature (P–T) pseudosections are used in combination with results from petrography, element composition mapping using micro X-ray fluorescence (µXRF) and scanning electron microscope (SEM) methods, and garnet composition data from analytical transects by electron probe microanalysis (EPMA), to study metachert metamorphism. All the samples are compositionally layered, so the possibility exists that an input bulk rock composition might not match the effective bulk composition at the site of garnet growth. If a mineral assemblage stability field in a calculated P–T pseudosection matched the mineral assemblage in the rock, this was taken as an initial indication of a permissible input bulk rock composition. In that case, refined constraints on the P–T conditions were sought by comparing calculated and measured garnet compositions. The studied rocks include samples that are carbonate-bearing, which require consideration of the effects of fluid composition in mixed H₂O–CO₂ fluids, as well as a sample in which the garnet is strongly zoned, texturally-complex, and inferred to be of polymetamorphic origin. The effects of element fractionation by that garnet were investigated by recalculating the P–T pseudosection using a new bulk rock composition with the garnet core content removed. In none of the samples did the calculated and observed composition isopleths for the garnet cores match, suggesting that initial garnet nucleation in these Mn-rich rocks was locally controlled. For most samples in which the calculated and observed mineral assemblages matched, successful estimates of the peak metamorphic conditions were obtained. A garnet chert (A12E) from the mylonite zone of the Alpine Fault at Vine Creek, near Hokitika, gave a tight intersection of composition isopleths, indicating peak metamorphic conditions of 510 °C/5.5 kbar, after recalculation to correct for element fractionation by the strongly-zoned garnet. This tight, modern constraint is within error of previously-reported results from traditional geothermobarometry (420–600 °C/5.9–13 kbar) and Raman spectroscopy of carbonaceous material (RSCM T = 556 °C) from nearby sites. A peak metamorphic estimate of 520–550 °C/7–10 kbar was obtained from a dolomite-bearing sample from the garnet zone near Fox Glacier (J34), in good comparison with published temperatures from Raman spectroscopy of carbonaceous material in nearby metagreywacke samples (526–546 °C). The prograde metamorphic P–T path was probably steep, based on growth of the garnet core at ~475535 °C/5–9 kbar. The successful results for these garnet chert samples show that the new a-x models for Mn-bearing minerals extend the range of rock types that are amenable to pseudosection modelling.  Results obtained in this study also serve to highlight several possible concerns: a) garnet nucleation and initial growth in very Mn-rich rocks may be subject to local compositional or kinetic controls; b) bulk rock compositions may not always mimic the effective bulk composition; c) the existing a–x models for Mn-bearing minerals and white micas may need refining; and d) some rocks may simply be ill-suited to thermodynamic forward modelling. Items a) and b) may be indicated by the common observation of a mismatch between predicted and measured garnet composition isopleths for garnet cores, and by a mismatch between garnet composition isopleths and the appropriate mineral assemblage field for sample AMS01, from the mylonite zone, Hari Hari, Southern Alps. For item c) every P–T pseudosection calculated using the new a–x models for Mn-bearing minerals showed garnet stable to very low temperatures below 300 °C. In addition, the P–T pseudosection for an oligoclase-zone metachporphyroblasts of Fe-Ti oxides (magnetitert (Sample J36) from Hari Mare stream, Franz Josef - Fox Glacier, indicated that the white mica margarite should be present instead of plagioclase (oligoclase), for a rock in which oligoclase is present and margarite is absent, a problem previously noted elsewhere. Item d) is exemplified by a very garnet-rich ferruginous metachert sample (J35, garnet zone, headwater region, Moeraki River, South Westland) which proved impossible to model successfully due to its complex mineral growth and deformation history. This sample contained multiple generations of carbonate with differing compositions, amphibole (not incorporated for modelling with the new a–x models for Mn-bearing minerals), large e associated with smaller, possibly later-formed ilmenite), and the garnet bands were offset by late deformation.  The garnetiferous metachert samples studied here preserve in their textures and compositions clues to their growth mechanism and metamorphic history. The textures in at least two of the samples are consistent with the diffusion controlled nucleation and growth model for garnet. This research has successfully used state of the art thermodynamic modelling techniques in combination with the latest internally consistent a-x models on Mn-rich metachert, for the first time, extracting P–T conditions of the metamorphism of garnetiferous metachert from the Southern Alps.</p>


Sign in / Sign up

Export Citation Format

Share Document