scholarly journals Proportions, Timing, and Re-equilibration Progress During the 1959 Summit Eruption of Kīlauea: an Example of Magma Mixing Processes Operating During OIB Petrogenesis

Author(s):  
Rosalind Tuthill Helz

Abstract Petrographic and chemical analysis of scoria samples collected during the 1959 Kīlauea summit eruption illustrate the progress of thermal and chemical homogenization of the melts, and the gradual growth and/or re-equilibration of olivine phenocrysts, over the course of the eruption. Glass compositions show that thermal equilibration was largely complete within the span of the eruption, while chemical homogenization was a work in progress. The olivine phenocryst population, known to contain conspicuous antecrystic components, is also hybrid within the euhedral population. The bulk of the olivine reached the level of the erupting magma on November 18-19, 1959. Zoning patterns in olivine phenocrysts show that initially unzoned grains developed normal zoning by the end of the eruption. Reverse zoning in relatively Fe-rich olivine phenocrysts (interpreted as cognate to the stored magma) was progressively eliminated from November 21 to December 19, 1959, by diffusive re-equilibration between crystals and melt. Toward the end of the eruption, the only olivine composition in direct contact with the melt was Fo84-86, with the original rim compositional heterogeneity gone in 4-5 weeks’ time. Activity in December 1959 differed from that in November, as high fountaining events were more closely spaced and almost all samples were picritic, with bulk MgO ≥16.5 wt %. Three different levels were in play during the 1959 eruption: a deep source for high-MgO melts and forsteritic (Fo87-89) olivines, an intermediate source for the bulk of the stored magma, and a shallower source for the most differentiated magma. This model is consistent with geophysical, petrologic and chemical observations. Comparison of the 1959 eruption with results from older explosive deposits suggest that stored and recharge melts and olivine from the deeper parts of Kīlauea’s plumbing are similar in composition to those observed or inferred in the 1959 eruption, so they behave similarly during extrusive and explosive periods alike.

Minerals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 195 ◽  
Author(s):  
Wenheng Liu ◽  
Xiaodong Liu ◽  
Jiayong Pan ◽  
Kaixing Wang ◽  
Gang Wang ◽  
...  

The Qingshanbao complex, part of the uranium metallogenic belt of the Longshou-Qilian mountains, is located in the center of the Longshou Mountain next to the Jiling complex that hosts a number of U deposits. However, little research has been conducted in this area. In order to investigate the origin and formation of mafic enclaves observed in the Qingshanbao body and the implications for magmatic-tectonic dynamics, we systematically studied the mineralogy, petrography, and geochemistry of these enclaves. Our results showed that the enclaves contain plagioclase enwrapped by early dark minerals. These enclaves also showed round quartz crystals and acicular apatite in association with the plagioclase. Electron probe analyses showed that the plagioclase in the host rocks (such as K-feldspar granite, adamellite, granodiorite, etc.) show normal zoning, while the plagioclase in the mafic enclaves has a discontinuous rim composition and shows instances of reverse zoning. Major elemental geochemistry revealed that the mafic enclaves belong to the calc-alkaline rocks that are rich in titanium, iron, aluminum, and depleted in silica, while the host rocks are calc-alkaline to alkaline rocks with enrichment in silica. On Harker diagrams, SiO2 contents are negatively correlated with all major oxides but K2O. Both the mafic enclaves and host rock are rich in large ion lithophile elements such as Rb and K, as well as elements such as La, Nd, and Sm, and relatively poor in high field strength elements such as Nb, Ta, P, Ti, and U. Element ratios of Nb/La, Rb/Sr, and Nb/Ta indicate that the mafic enclaves were formed by the mixing of mafic and felsic magma. In terms of rare earth elements, both the mafic enclaves and the host rock show right-inclined trends with similar weak to medium degrees of negative Eu anomaly and with no obvious Ce anomaly. Zircon LA-ICP-MS (Laser ablation inductively coupled plasma mass spectrometry) U-Pb concordant ages of the mafic enclaves and host rock were determined to be 431.8 5.2 Ma (MSWD (mean standard weighted deviation)= 1.5, n = 14) and 432.8 4.2 Ma (MSWD = 1.7, n = 16), respectively, consistent with that for the zircon U-Pb ages of the granite and medium-coarse grained K-feldspar granites of the Qingshanbao complex. The estimated ages coincide with the timing of the late Caledonian collision of the Alashan Block. This comprehensive analysis allowed us to conclude that the mafic enclaves in the Qingshanbao complex were formed by the mixing of crust-mantle magma with mantle-derived magma due to underplating, which caused partial melting of the ancient basement crust during the collisional orogenesis between the Alashan Block and Qilian rock mass in the early Silurian Period.


2019 ◽  
Vol 60 (11) ◽  
pp. 2051-2075
Author(s):  
Brett H Walker ◽  
Michael O Garcia ◽  
Tim R Orr

Abstract The high frequency of historical eruptions at Kīlauea Volcano presents an exceptional opportunity to address fundamental questions related to the transport, storage, and interaction of magmas within rift zones. The Nāpau Crater area on Kīlauea’s East Rift Zone (ERZ) experienced nine fissure eruptions within 50 years (1961–2011). Most of the magma intruded during these frequent eruptions remained stored within the rift zone, creating a potential magma mixing depot within the ERZ. The superbly monitored and sampled 2011 eruption (Puʻu ʻŌʻō episode 59) presents an extraordinary opportunity to evaluate magma mixing processes within the ERZ. Whole-rock, glass, and olivine compositions were determined, not only for lava from the 2011 eruption, but also for a new suite of Nāpau Crater area samples from the 1963, 1965, 1968, 1983, and 1997 eruptions, as well as the previously undocumented 1922 eruption. Whole-rock XRF data revealed two geochemically distinct magma batches for episode 59: one less evolved (∼6·6 wt % MgO, 0·46 wt % K2O) than the other (∼6·2 wt % MgO, 0·58 wt % K2O). Episode 59 lava is remarkably aphyric (∼0·1 vol. % phenocrysts), making use of mineralogy to identify parent magma affinities problematic. Linear compositional trends of whole-rock major and trace elements, and reversely zoned olivine crystals indicate episode 59 lavas underwent magma mixing. Least squares regression calculations and plots of major and trace element data, were used to evaluate whether the episode 59 samples are products of mixing summit-derived magma with residual magma from previous Nāpau Crater area eruptions. The regression results and trace element ratios are inconsistent with previously proposed mixing scenarios, but they do support mixing between summit-derived magma and residual magma from the 1983 and 1997 Nāpau Crater area eruptions. These magmas were stored in physically and chemically distinct pods at depths of 1·6–3·0 km prior to mixing with new magma intruded from the summit to produce the episode 59 lava. One pod contained a fractionated equivalent of 1983 lava, and the other a hybrid of compositions similar to 1983 and 1997 lavas. The petrology of episode 59 lava demonstrates that magmas from two previous eruptions (1983 and 1997) were available to mix with magma intruded from the summit region. This study clarifies the pre-eruptive history of the mixed episode 59 lava, and elucidates the evolution of the volcano's magmatic system in a region of frequent eruptions.


Lithos ◽  
2020 ◽  
Vol 376-377 ◽  
pp. 105776
Author(s):  
Zuxing Chen ◽  
Zhigang Zeng ◽  
Xiaoyuan Wang ◽  
Xing Peng ◽  
Yuxiang Zhang ◽  
...  

Lithosphere ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 834-854 ◽  
Author(s):  
Yan Zhao ◽  
Wenhao Ao ◽  
Hong Zhang ◽  
Qian Wang ◽  
Mingguo Zhai ◽  
...  

Abstract Latest Paleoproterozoic (ca. 1.8–1.6 Ga) magmatic rocks outcrop in the Dunhuang terrane, represented by A-type granites and mafic (basaltic) rocks that have metamorphosed into amphibolites. The A-type granites, emplaced at ca. 1.79–1.77 Ga, are geochemically characterized by high Na2O + K2O, Fe2O3T, Zr, Nb, and Ce contents, as well as high Fe2O3T/(Fe2O3T + MgO) and Ga/Al ratios. Furthermore, they have Nb/Ta, Y/Nb, Rb/Nb, and Sc/Nb ratios of 12.10–15.56, 1.45–1.79, 3.52–6.51, and 0.11–0.19, respectively, showing affinity to A2-type granite. The A-type granites have negative εNd(t) values (−5.4 to −4.8) with Neoarchean depleted mantle (TDM2) ages (2591–2494 Ma), corresponding to coupling between εHf(t) values (−4.85 to -0.92) and TDM2 ages (2817–2556 Ma) of zircons. Therefore, the A-type granite pluton was mostly generated by partial melting of Neoarchean tonalitic to granodioritic basement rocks of the Dunhuang Complex in a postcollisional tectonic setting following a late Paleoproterozoic continent-continent collisional event. The metamafic rocks have a protolith age of 1605 ± 45 Ma and metamorphic age of 317 ± 20 Ma, indicating a Paleozoic tectonic event. The metamafic rock samples are geochemically characterized by relatively high alkali (Na2O + K2O = 4.39–4.81 wt%) contents and low Nb/Y (0.63–0.66) ratios, and they show steep rare earth element (REE) patterns with light REE enrichment and insignificant Eu anomalies and Nb-Ta, Zr-Hf, and Ti anomalies, resembling subalkaline oceanic-island basalt affinity. They have positive εNd(t) values (+0.8 to +1.8) close to the chondrite evolutionary line and variable εHf(t) values (-1.09 to +9.06) of zircons. Hence, the protolith of the metamafic rocks may have been produced by magma mixing processes between a depleted mantle source and a metasomatized lithospheric mantle source during the initial rifting stage in an extensional setting, completing the formation of the Precambrian Dunhuang Complex. Considering the ca. 1.85–1.80 Ga regional metamorphism in the Dunhuang terrane, the latest Paleoproterozoic (ca. 1.8–1.6 Ga) A2-type granitic magmatism and mafic magmatism documented the postorogenic to initial rifting processes following the global-scale late Paleoproterozoic collisional event, which is comparable with ca. 1.80–1.67 Ga postcollisional and ca. 1.60–1.53 Ga anorogenic magmatism in the North China craton, but different from that of the Tarim craton.


2010 ◽  
Vol 52 (1) ◽  
pp. 55-82 ◽  
Author(s):  
Graham W. McLeod ◽  
Tim J. Dempster ◽  
John W. Faithfull

Nature ◽  
1983 ◽  
Vol 306 (5941) ◽  
pp. 323-327 ◽  
Author(s):  
Brian R. Bell

2021 ◽  
Author(s):  
Soniya Devi Yambem ◽  
Manjari Jain

Time is an important and limited resource that can drive the trade-off between various essential activities in the lives of animals. Group-living animals need to perform different behaviour to meet their individual needs and also participate in group activities. They must, therefore, partition the available time between these activities which may vary considerably with environmental and ecological conditions. We examined time-activity budget of a cooperative passerine, Jungle Babbler (Argya striata) and how their behaviour vary across diel and seasonal scales. A repertoire of 13 behaviour was recorded of which 12 behaviour that occur throughout the year were examined further in detail. This included individual behaviour such as foraging, grooming, rest, shower and group behaviour such as allogrooming, movement, play, sentinel, mobbing and inter-group fight. Our results indicate that most of the time (about 70%) was spent performing individual behaviour and the remaining time (about 30%) was allocated to social behaviour. We also found almost all behaviour varied across diel and seasonal scale with respect to proportion of time spent performing them. This highlights the impact of environmental factors on how animals partition their time to perform various activities. Our study also lays the foundation for future studies examining the role of ecological factors such as habitat type and predation pressure in driving these patterns of behaviour in Jungle Babblers.


2020 ◽  
Vol 105 (1) ◽  
pp. 77-91 ◽  
Author(s):  
Kevin Werts ◽  
Calvin G. Barnes ◽  
Valbone Memeti ◽  
Barbara Ratschbacher ◽  
Dustin Williams ◽  
...  

Abstract Bulk-rock compositions are commonly used as proxies for melt compositions, particularly in silicic plutonic systems. However, crystal accumulation and/or melt loss may play an important role in bulk-rock compositional variability (McCarthy and Hasty 1976; McCarthy and Groves 1979; Wiebe 1993; Wiebe et al. 2002; Collins et al. 2006; Deering and Bachmann 2010; Miller et al. 2011; Vernon and Collins 2011; Lee and Morton 2015; Lee et al. 2015; Barnes et al. 2016a; Schaen et al. 2018). Recognizing and quantifying the effects of crystal accumulation and melt loss in these silicic systems is challenging. Hornblende-melt Fe/Mg partitioning relationships and hornblende (Hbl) chemometry are used here to test for equilibrium with encompassing bulk-rock and/or glass compositions from several plutonic and volcanic systems. Furthermore, we assess the extent to which these tests can be appropriately applied to Hbl from plutonic systems by investigating whether Hbl from the long-lived (~10 Ma) Tuolumne Intrusive Complex preserves magmatic crystallization histories. On the basis of regular zoning patterns, co-variation of both fast- and slow-diffusing trace elements, Hbl thermometry, and compositional overlap with volcanic Hbl we conclude that Hbl from plutons largely preserve records supporting the preservation of a magmatic crystallization history, although many compositional analyses yield calculated temperatures <750 °C, which is unusual in volcanic Hbl. Hornblende is only rarely in equilibrium with host plutonic bulk-rock compositions over a wide range of SiO2 contents (42–78 wt%). Hornblende chemometry indicates that the majority of Hbl from the plutonic systems investigated here is in equilibrium with melts that are typically more silicic (dacitic to rhyolitic in composition) than bulk-rock compositions. These results are consistent with crystal accumulation and/or loss of silicic melts within middle- to upper-crustal plutons. Although the processes by which melts are removed from these plutonic systems is uncertain, it is evident that these melts are either redistributed in the crust (e.g., leucogranite dikes, plutonic roofs, etc.) or are instead erupted. In contrast, Hbl from volcanic rocks is more commonly in equilibrium with bulk-rock and glass compositions. In most cases, where Hbl is out of equilibrium with its host glass, the glasses are more evolved than the calculated melts indicating crystallization from a less fractionated melt and/or mixed crystal populations. Where Hbl is not in equilibrium with volcanic bulk-rocks, the bulk-rock compositions are typically more mafic than the calculated melts. In some intermediate volcanic samples, the occurrence of wide-ranges of calculated melt compositions is indicative of magma mixing. The general absence of Hbl with temperatures <750 °C from volcanic systems suggests that magmatic mushes below this temperature are unlikely to erupt. Our results indicate that bulk-rock compositions of granitic plutonic rocks only rarely approximate melt compositions and that the possibility of crystal accumulation and/or melt loss cannot be ignored. We suggest that detailed assessments of crystal accumulation and melt loss processes in magmatic systems are crucial to evaluating magma differentiation processes and discerning petrogenetic links between plutonic and volcanic systems.


Sign in / Sign up

Export Citation Format

Share Document