scholarly journals Petrology and Geochemistry of Serpentinites Associated with the Ultra-High Pressure Lago di Cignana Unit (Italian Western Alps)

2019 ◽  
Vol 60 (6) ◽  
pp. 1229-1262 ◽  
Author(s):  
Mattia Gilio ◽  
Marco Scambelluri ◽  
Samuele Agostini ◽  
Marguerite Godard ◽  
Daniel Peters ◽  
...  

AbstractIn the Western Alps, the ophiolitic Zermatt–Saas Zone (ZSZ) and the Lago di Cignana Unit (LCU) record oceanic lithosphere subduction to high (540°C, 2·3GPa) and ultra-high pressure (600°C, 3·2GPa), respectively. The top of the Zermatt–Saas Zone in contact with the Lago di Cignana Unit consists of olivine + Ti-clinohumite-bearing serpentinites (the Cignana serpentinite) hosting olivine + Ti-clinohumite veins and dykelets of olivine + Ti-chondrodite + Ti-clinohumite. The composition of this serpentinite reveals a refertilized oceanic mantle peridotite protolith that became subsequently enriched in fluid-mobile elements (FME) during oceanic serpentinization. The olivine + Ti-clinohumite veins in the Cignana serpentinite display Rare Earth Element (REE) and FME compositions quite similar to the host-rock, which suggests closed-system dehydration of this serpentinite during subduction. The Ti-chondrodite-bearing dykelets are richer in REE and FME than the host-rock and the dehydration olivine + Ti-clinohumite veins: their Nd composition points to a mafic protolith, successively overprinted by oceanic metasomatism and by subduction zone recrystallization. These dykelets are comparable in composition to eclogites within the ultra-high pressure LCU that derive from subducted oceanic mafic crust. Different from the LCU, serpentinites from the core domains of the ZSZ display REE compositions indicating a depleted mantle protolith. The oceanic serpentinization of these rocks led to an increase in FME and to seawater-like Sr isotope compositions. The serpentinites sampled at increasing distance from the ultra-high pressure LCU reveal different mantle protoliths, still preserve an oceanic geochemical imprint and contain mafic dykelets affected by oceanic metasomatism. The subduction zone history of these rocks thus occurred under relatively closed system conditions, the only possible change during subduction being an enrichment in As and Sb recorded by the serpentinites closer to the crustal LCU. The ZSZ and Cignana serpentinites thus likely evolved in a slab setting and were weakly exposed to interaction with slab-derived fluids characteristic of plate interface settings. Our data suggest two possible scenarios for the evolution of the studied ZSZ and Cignana serpentinites. They are either part of a coherent ophiolite unit whose initial lithospheric mantle was variably affected by depletion and re-fertilization processes, or they belong to separate tectonic slices derived from two different oceanic mantle sections. In the Cignana serpentinite atop the ZSZ, the presence of Ti-chondrodite dykelets similar in composition to the LCU eclogites suggests these two domains were closely associated in the oceanic lithosphere and shared the same evolution to ultra-high pressure conditions during Alpine subduction.

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Petra Maierová ◽  
Karel Schulmann ◽  
Pavla Štípská ◽  
Taras Gerya ◽  
Ondrej Lexa

AbstractThe classical concept of collisional orogens suggests that mountain belts form as a crustal wedge between the downgoing and overriding plates. However, this orogenic style is not compatible with the presence of (ultra-)high pressure crustal and mantle rocks far from the plate interface in the Bohemian Massif of Central Europe. Here we use a comparison between geological observations and thermo-mechanical numerical models to explain their formation. We suggest that continental crust was first deeply subducted, then flowed laterally underneath the lithosphere and eventually rose in the form of large partially molten trans-lithospheric diapirs. We further show that trans-lithospheric diapirism produces a specific rock association of (ultra-)high pressure crustal and mantle rocks and ultra-potassic magmas that alternates with the less metamorphosed rocks of the upper plate. Similar rock associations have been described in other convergent zones, both modern and ancient. We speculate that trans-lithospheric diapirism could be a common process.


2012 ◽  
Vol 4 (1) ◽  
pp. 745-781 ◽  
Author(s):  
C. J. Warren

Abstract. The exhumation of high and ultra-high pressure rocks is ubiquitous in Phanerozoic orogens created during continental collisions, and is common in many ocean-ocean and ocean-continent subduction zone environments. Three different tectonic environments have previously been reported, which exhume deeply buried material by different mechanisms and at different rates. However it is becoming increasingly clear that no single mechanism dominates in any particular tectonic environment, and the mechanism may change in time and space within the same subduction zone. In order for buoyant continental crust to subduct, it must remain attached to a stronger and denser substrate, but in order to exhume, it must detach (and therefore at least locally weaken) and be initially buoyant. Denser oceanic crust subducts more readily than more buoyant continental crust but exhumation must be assisted by entrainment within more buoyant and weak material such as serpentinite or driven by the exhumation of structurally lower continental crustal material. Weakening mechanisms responsible for the detachment of crust at depth include strain, hydration, melting, grain size reduction and the development of foliation. These may act locally or may act on the bulk of the subducted material. Metamorphic reactions, metastability and the composition of the subducted crust all affect buoyancy and overall strength. Subduction zones change in style both in time and space, and exhumation mechanisms change to reflect the tectonic style and overall force regime within the subduction zone. Exhumation events may be transient and occur only once in a particular subduction zone or orogen, or may be more continuous or occur multiple times.


2012 ◽  
Vol 8 (4) ◽  
pp. 465-472 ◽  
Author(s):  
Roberto Compagnoni ◽  
Franco Rolfo ◽  
Chiara Groppo ◽  
Takao Hirajima ◽  
Robertino Turello

2016 ◽  
Vol 441 ◽  
pp. 155-166 ◽  
Author(s):  
Marco Scambelluri ◽  
Gray E. Bebout ◽  
Donato Belmonte ◽  
Mattia Gilio ◽  
Nicola Campomenosi ◽  
...  

Lithos ◽  
2016 ◽  
Vol 252-253 ◽  
pp. 145-159 ◽  
Author(s):  
Kathrin Fassmer ◽  
Gerrit Obermüller ◽  
Thorsten J. Nagel ◽  
Frederik Kirst ◽  
Nikolaus Froitzheim ◽  
...  

2021 ◽  
Author(s):  
Gary Egbert ◽  
Bo Yang ◽  
Paul A. Bedrosian ◽  
Kerry Key ◽  
Dean Livelybrooks ◽  
...  

Abstract Subduction of hydrated oceanic lithosphere can carry water deep into the Earth, with important consequences for a range of tectonic and magmatic processes. Most fluid is released at relatively shallow depths in the forearc where it is thought to play a critical role in controlling mechanical properties and seismic behavior of the subduction megathrust. Here we present results from three-dimensional inversion of nearly 400 long-period magnetotelluric sites, including 64 offshore, to provide new insights into the distribution of fluids in the forearc of the Cascadia subduction zone. Our amphibious dataset provides new constraints on the geometry of the electrically resistive Siletzia terrane, a thickened section of oceanic crust accreted to North America in the Eocene, and the conductive accretionary complex, which is being underthrust all along the margin. Fluids accumulate, over time-scales likely exceeding 1 My, above the plate interface in metasedimentary units, while the mafic rocks of Siletzia remain dry. Fluids in metasediments tend to peak at fixed slab-depths of 17.5 and 30 km, suggesting control by metamorphic processes, but also concentrate around the edges of Siletzia, suggesting that this mafic block is impermeable, with dehydration fluids escaping up-dip along the megathrust. Our results demonstrate that lithology of the overriding crust can play a critical role in controlling fluid transport and sequestration in a subduction zone, with potentially important implications for mechanical properties.


2021 ◽  
Author(s):  
Armel Menant ◽  
Onno Oncken ◽  
Johannes Glodny ◽  
Samuel Angiboust ◽  
Laurent Jolivet ◽  
...  

<p>Subduction margins are the loci of a wide range of deformation processes occurring at different timescales along the plate interface and in the overriding forearc crust. Whereas long-term deformation is usually considered as stable over Myr-long periods, this vision is challenged by an increasing number of observations suggesting a long-term pulsing evolution of active margins. To appraise this emerging view of a highly dynamic subduction system and identify the driving mechanisms, detailed studies on high pressure-low temperature (HP-LT) exhumed accretionary complexes are crucial as they open a window on the deformation history affecting the whole forearc region.</p><p>In this study, we combine structural and petrological observations, Raman spectroscopy on carbonaceous material, Rb/Sr multi-mineral geochronology and thermo-mechanical numerical models to unravel with an unprecedented resolution the tectono-metamorphic evolution of the Late-Cenozoic HP-LT nappe stack cropping out in western Crete (Hellenic subduction zone). A consistent decrease of peak temperatures and deformation ages toward the base of the nappe pile allows us to identify a minimum of three basal accretion episodes between ca. 24 Ma and ca. 15 Ma. On the basis of structural evidences and pressure-temperature-time-strain predictions from numerical modeling, we argue that each of these mass-flux events triggered a pulse in the strain rate, sometimes associated with a switch of the stress regime (i.e., compressional/extensional). Such accretion-controlled transient deformation episodes last at most ca. 1-2 Myr and may explain the poly-phased structural records of exhumed rocks without involving changes in far-field stress conditions. This long-term background tectonic signal controlled by deep accretionary processes plays a part in active deformations monitored at subduction margins, though it may remain blind to most of geodetic methods because of superimposed shorter-timescale transients, such as seismic-cycle-related events.</p>


2003 ◽  
Vol 215 (1-2) ◽  
pp. 57-72 ◽  
Author(s):  
Thomas J. Lapen ◽  
Clark M. Johnson ◽  
Lukas P. Baumgartner ◽  
Nancy J. Mahlen ◽  
Brian L. Beard ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document