scholarly journals F-term moduli stabilization and uplifting

2019 ◽  
Vol 2019 (9) ◽  
Author(s):  
Tatsuo Kobayashi ◽  
Osamu Seto ◽  
Shintaro Takada ◽  
Takuya H Tatsuishi ◽  
Shohei Uemura ◽  
...  

Abstract We study Kähler moduli stabilization in type IIB superstring theory. We propose a new moduli stabilization mechanism by the supersymmetry breaking chiral superfield which is coupled to Kähler moduli in the Kähler potential. We also study its uplifting of the Large Volume Scenario (LVS). In both cases, the form of the superpotential is crucial for moduli stabilization. We confirm that our uplifting mechanism does not destabilize the vacuum of the LVS drastically.

2002 ◽  
Vol 17 (25) ◽  
pp. 1627-1634 ◽  
Author(s):  
G. GERMÁN ◽  
ANUPAM MAZUMDAR ◽  
A. PÉREZ-LORENZANA

We study supergravity inflationary models where inflation is produced along the angular direction. For this we express the scalar component of a chiral superfield in terms of the radial and the angular components. We then express the supergravity potential in a form particularly simple for calculations involving polynomial expressions for the superpotential and Kähler potential. We show for a simple Polonyi model the angular direction may give rise to a stage of inflation when the radial field is fixed to its minimum. We obtain analytical expressions for all the relevant inflationary quantities and discuss the possibility of supersymmetry breaking in the radial direction while inflating by the angular component.


Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1818
Author(s):  
Yifan Cheng ◽  
Yan-Min Dai ◽  
Gaber Faisel ◽  
Otto C. W. Kong

This is a sequel to our earlier paper presenting a supersymmetric Nambu–Jona–Lasinio (NJL)-type model for a real superfield composite. The model in the simplest version has only a chiral superfield (multiplet), with a strong four-superfield interaction in the Kähler potential that induces a real two-superfield composite with vacuum condensate. The latter can have supersymmetry breaking parts, which we have shown to bear nontrivial solutions under a standard nonperturbative analysis for a Nambu–Jona–Lasinio-type model on a superfield setting. In this article, we generalize our earlier analysis by allowing a supersymmetric mass term for the chiral superfield, as well as possible θ2 components for the soft supersymmetry breaking part of the condensate. We present admissible nontrivial vacuum solutions and an analysis of the resulted low energy effective theory with components of the composite becoming dynamical. The determinant of the fermionic modes is shown to be zero, illustrating the presence of the expected Goldstino.


2018 ◽  
Vol 182 ◽  
pp. 02005
Author(s):  
I. Antoniadis

I describe the phenomenology of a model of supersymmetry breaking in the presence of a tiny (tuneable) positive cosmological constant. It utilises a single chiral multiplet with a gauged shift symmetry, that can be identified with the string dilaton (or an appropriate compactification modulus). The model is coupled to the MSSM, leading to calculable soft supersymmetry breaking masses and a distinct low energy phenomenology that allows to differentiate it from other models of supersymmetry breaking and mediation mechanisms. We also study the question if this model can lead to inflation by identifying the dilaton with the inflaton. We find that this is possible if the Kähler potential is modified by a term that has the form of NS5-brane instantons, leading to an appropriate inflationary plateau around the maximum of the scalar potential, depending on two extra parameters.


2012 ◽  
Vol 27 (11) ◽  
pp. 1230013 ◽  
Author(s):  
AALOK MISRA

In this paper, we review briefly recent progress made in realizing local(ized around a mobile spacetime filling D3-brane in) D3/D7 μ-split Supersymmetry in (the large volume limit of Type IIB) String Theory (compactified on Swiss-Cheese Calabi–Yau orientifolds) as well as obtaining a 125 GeV (light) Higgs in the same setup. We also discuss obtaining the geometric Kähler potential (and hence the Ricci-flat metric) for the Swiss-Cheese Calabi–Yau in the large volume limit using the Donaldson's algorithm and intuition from GLSM-based calculations — we present new results for Swiss-Cheese Calabi–Yau (used in the setup) metrics at points finitely away from the "big" divisor.


1997 ◽  
Vol 12 (35) ◽  
pp. 2647-2653 ◽  
Author(s):  
Tianjun Li ◽  
D. V. Nanopoulos ◽  
Jorge L. Lopez

We propose a supergravity model that contains elements recently shown to arise in the strongly-coupled limit of the E8 × E8 heterotic string (M-theory), including a no-scale-like Kähler potential, the identification of the string scale with the gauge coupling unification scale, and the onset of supersymmetry breaking at an intermediate scale determined by the size of the 11th dimension of M-theory. We also study the phenomenological consequences of such scenario, which include a rather constrained sparticle spectrum within the reach of present-generation particle accelerators.


Sign in / Sign up

Export Citation Format

Share Document