radial field
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 6)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
Vol 923 (2) ◽  
pp. 253
Author(s):  
S. Q. Zhao ◽  
Huirong Yan ◽  
Terry Z. Liu ◽  
Mingzhe Liu ◽  
Mijie Shi

Abstract We report analysis of sub-Alfvénic magnetohydrodynamic (MHD) perturbations in the low-β radial-field solar wind employing the Parker Solar Probe spacecraft data from 2018 October 31 to November 12. We calculate wavevectors using the singular value decomposition method and separate MHD perturbations into three eigenmodes (Alfvén, fast, and slow modes) to explore the properties of sub-Alfvénic perturbations and the role of compressible perturbations in solar wind heating. The MHD perturbations show a high degree of Alfvénicity in the radial-field solar wind, with the energy fraction of Alfvén modes dominating (∼45%–83%) over those of fast modes (∼16%–43%) and slow modes (∼1%–19%). We present a detailed analysis of a representative event on 2018 November 10. Observations show that fast modes dominate magnetic compressibility, whereas slow modes dominate density compressibility. The energy damping rate of compressible modes is comparable to the heating rate, suggesting the collisionless damping of compressible modes could be significant for solar wind heating. These results are valuable for further studies of the imbalanced turbulence near the Sun and possible heating effects of compressible modes at MHD scales in low-β plasma.


2019 ◽  
Vol 631 ◽  
pp. A27
Author(s):  
R. H. Cameron ◽  
J. Jiang

Aims. The 1D mean-field equation describing the evolution of the subsurface toroidal field can be used with the observed surface radial field to model the subsurface toroidal flux density. Our aim is to test this model and determine the relationship between the observationally inferred surface toroidal field (as a proxy for flux emergence), and the modelled subsurface toroidal flux density. Methods. We used a combination of sunspot area observations and the surface toroidal field inferred from Wilcox Solar Observatory (WSO) line-of-sight magnetic field observations. We then compared them with the results of a 1D mean-field evolution equation for the subsurface toroidal field, driven by the observed radial field from the National Solar Observatory/Kitt Peak and SOLIS observations. Results. We derive calibration curves relating the subsurface toroidal flux density to the observed surface toroidal field strengths and sunspot areas. The calibration curves are for two regimes, one corresponding to ephemeral region emergence outside of the butterfly wings, the other to active region emergence in the butterfly wings. We discuss this in terms of the size and vertical velocity associated with the two types of flux emergence.


2019 ◽  
Vol 625 ◽  
pp. A27 ◽  
Author(s):  
K. G. Strassmeier ◽  
T. A. Carroll ◽  
I. V. Ilyin

Aims. We present a temperature and a magnetic-field surface map of the K2 subgiant of the active binary II Peg. Employed are high resolution Stokes IV spectra obtained with the new Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT). Methods. Fourteen average line profiles are inverted using our iMap code. We have employed an iterative regularization scheme without the need of a penalty function and incorporate a physical 3D description of the surface field vector. The spectral resolution of our data is 130 000 which converts to 20 resolution elements across the disk of II Peg. Results. Our main result is that the temperature features on II Peg closely correlate with its magnetic field topology. We find a warm spot (350 K warmer with respect to the effective temperature) of positive polarity and radial field density of 1.1 kG coexisting with a cool spot (780 K cooler) of negative polarity of 2 kG. Several other cool features are reconstructed containing both polarities and with (radial) field densities of up to 2 kG. The largest cool spot is reconstructed with a temperature contrast of 550 K, an area of almost 10% of the visible hemisphere, and with a multipolar magnetic morphology. A meridional and an azimuthal component of the field of up to ±500 G is detected in two surface regions between spots with strong radial fields but different polarities. A force-free magnetic-field extrapolation suggests that the different polarities of cool spots and the positive polarity of warm spots are physically related through a system of coronal loops of typical height of ≈2 R⋆. While the Hα line core and its red-side wing exhibit variations throughout all rotational phases, a major increase of blue-shifted Hα emission was seen for the phases when the warm spot is approaching the stellar central meridian indicating high-velocity mass motion within its loop. Conclusions. Active stars such as II Peg can show coexisting cool and warm spots on the surface that we interpret resulting from two different formation mechanisms. We explain the warm spots due to photospheric heating by a shock front from a siphon-type flow between regions of different polarities while the majority of the cool spots is likely formed due to the expected convective suppression like on the Sun.


Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 962 ◽  
Author(s):  
Xingxu Zhang ◽  
Xiaobiao Shan ◽  
Zhiyuan Shen ◽  
Tao Xie ◽  
Jianmin Miao

This paper presents a new sensor based on a radial field bulk piezoelectric diaphragm to provide energy-efficient and high-performance situational sensing for autonomous underwater vehicles (AUVs). This sensor is self-powered, does not need an external power supply, and works efficiently in d33 mode by using inter-circulating electrodes to release the radial in-plane poling. Finite element analysis was conducted to estimate the sensor behavior. Sensor prototypes were fabricated by microfabrication technology. The dynamic behaviors of the piezoelectric diaphragm were examined by the impedance spectrum. By imitating the underwater disturbance and generating the oscillatory flow velocities with a vibrating sphere, the performance of the sensor in detecting the oscillatory flow was tested. Experimental results show that the sensitivity of the sensor is up to 1.16 mV/(mm/s), and the detectable oscillatory flow velocity is as low as 4 mm/s. Further, this sensor can work well under a disturbance with low frequency. The present work provides a good application prospect for the underwater sensing of AUVs.


2017 ◽  
Vol 473 (3) ◽  
pp. 3367-3376 ◽  
Author(s):  
M. E. Oksala ◽  
J. Silvester ◽  
O. Kochukhov ◽  
C. Neiner ◽  
G. A. Wade ◽  
...  

Abstract Previous studies of the chemically peculiar Bp star 36 Lyn revealed a moderately strong magnetic field, circumstellar material and inhomogeneous surface abundance distributions of certain elements. We present in this paper an analysis of 33 high signal-to-noise ratio, high-resolution Stokes IV observations of 36 Lyn obtained with the Narval spectropolarimeter at the Bernard Lyot Telescope at Pic du Midi Observatory. From these data, we compute new measurements of the mean longitudinal magnetic field, Bℓ, using the multiline least-squares deconvolution (LSD) technique. A rotationally phased Bℓ curve reveals a strong magnetic field, with indications for deviation from a pure dipole field. We derive magnetic maps and chemical abundance distributions from the LSD profiles, produced using the Zeeman–Doppler imaging code InversLSD. Using a spherical harmonic expansion to characterize the magnetic field, we find that the harmonic energy is concentrated predominantly in the dipole mode (ℓ = 1), with significant contribution from both the poloidal and toroidal components. This toroidal field component is predicted theoretically, but not typically observed for Ap/Bp stars. Chemical abundance maps reveal a helium enhancement in a distinct region where the radial magnetic field is strong. Silicon enhancements are located in two regions, also where the radial field is stronger. Titanium and iron enhancements are slightly offset from the helium enhancements, and are located in areas where the radial field is weak, close to the magnetic equator.


2017 ◽  
Vol 17 (9) ◽  
pp. 2807-2813
Author(s):  
Laurane Gillette ◽  
Gwenael Gaborit ◽  
Jean Dahdah ◽  
Anne Grau ◽  
Valerie Murin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document