scholarly journals Heart rate: control mechanisms, pathophysiology and assessment of the neurocardiac system in health and disease

QJM ◽  
2021 ◽  
Author(s):  
R Armstrong ◽  
P Wheen ◽  
L Brandon ◽  
A Maree ◽  
R -A Kenny

Abstract The monitoring of physiological function and dysfunction is an important principle in modern medicine. Heart rate is a basic example of this type of observation, particularly assessing the neurocardiac system, which entails the autonomic nervous system and intracardiac processes. The neurocardiac axis is an underappreciated and often overlooked system which, if measured appropriately in the clinical setting, may allow identification of patients at risk of disease progression and even mortality. While heart rate itself is a simplistic tool, more information may be gathered through assessing heart rate variability and heart rate recovery time. Studies have demonstrated an association of slow heart rate recovery and lower heart rate variability as markers of elevated sympathetic and lower parasympathetic tone. These parameters have additionally been shown to relate to development of arrhythmia, heart failure, systemic inflammatory processes, ischaemic heart disease and an increased rate of mortality. The aim of this review is to detail how heart rate is homeostatically controlled by the autonomic nervous system, how heart rate can impact on pathophysiological processes, and how heart rate variability and heart rate recovery time may be used in the clinical setting to allow the neurocardiac system to be assessed.

2015 ◽  
Vol 88 (3) ◽  
pp. 304-309 ◽  
Author(s):  
Cosmin Grad

Background Heart rate (HR) can appear static and regular at a time at rest, during exercise or recovery after exercise. However, HR is constantly adjusted due to factors such as breathing, blood pressure control, thermoregulation and the renin-angiotensin system, leading to a more dynamic response that can be quantified using HRV (heart rate variability) . HRV is defined as the deviation in time between successive normal heart beat and is a noninvasive method to measure the total variation in a number of HR interval. HRV can serve as measure of autonomic activity of sino atrial node . The aim of the study was to determine the influence of certain clinical and paraclinical parameters on heart rate recovery after exercise in patients with ischemic heart disease and the relation with HRV using 24 h Holter monitoring.MethodsThe study included 46 patients who were subjected to cardiovascular exercise stress test and also to 24 h Holter EKG monitoring. Subjects had a mean age of 56.2±11,2 years, with a minimum of 25 and a maximum of 79 years. The study included 22 (47,8%) men and 24 (52,2%) women.  Statistical analysis was performed using MedCalc software version 14.8.1. Multivariate analysis consisted of the construction of several multiple linear regression models. A p value of 0.05 was considered statistically significant.ResultsThe HRV values (time domain) were all lower in the IHD compared with the group without coronary heart disease, even if the difference is not statistically significant. Also rest and maximal HR values were similar  but during the test varies in the sense that  those with IHD had higher values of rest and maximal  HR and lower HRR, but not statistically significant.ConclusionsHRV is a very easy and safe method if there is an available device and it is used for evaluation of the autonomic nervous system in many cardiovascular diseases, but also in other pathologies.In uncomplicated ischemic heart disease HRV is depressed, but not significant. HRR, which is also considered an indicator of the parasympathetic activityafter exercise termination, is also non-significantlly decreased in ischemic patients and the correlation between them is weak. Both HRV and HRR parameters can be easily measured, but the best algorythm of this issue requires further studies, conducted in larger patient populations. Although HRR and HRV are tools to measure the autonomic nervous system activity the relation between them need more studies to be able to quantify the arrhythmogenic risk.


2016 ◽  
Vol 17 (5) ◽  
pp. 498
Author(s):  
Alyssa Conte Da Silva ◽  
Juliana Falcão Padilha ◽  
Jefferson Luiz Brum Marques ◽  
Cláudia Mirian De Godoy Marques

Introdução: Existem poucos estudos que evidenciam a manipulação vertebral relacionada à modulação autonômica cardíaca. Objetivo: Revisar a literatura sobre os efeitos da manipulação vertebral sobre a modulação autonômica cardíaca. Métodos: Foi realizada uma busca bibliográfica nas bases de dados da saúde Medline, Pubmed e Cinahl, no período correspondido entre setembro e novembro de 2014. Foram utilizados os descritores em inglês Spinal Manipulation, Cardiac Autonomic Modulation, Autonomic Nervous System, Heart Rate Variability, além de associações entre eles. Resultados: Foram encontrados 190 artigos, sendo excluídos 39 por serem repetidos, restando 151. Destes, 124 não se encaixaram nos critérios de inclusão e após leitura crítica e análise dos materiais foram selecionados 7 artigos. Grande parte dos estudos revelou que a manipulação da coluna, independente do segmento, demonstra alterações autonômicas, tanto em nível simpático quanto parassimpático. Conclusão: Existem diferentes metodologias para avaliação da modulação autonômica cardíaca, sendo a Variabilidade da Frequência cardíaca através do eletrocardiograma a mais utilizada. A manipulação vertebral exerceu influência, na maioria dos artigos, sobre a modulação autonômica cardíaca.Palavras-chave: manipulação da coluna, sistema nervoso autônomo, variabilidade da frequência cardíaca. 


2014 ◽  
Vol 24 (1) ◽  
pp. 17-22 ◽  
Author(s):  
Ugur Nadir Karakulak ◽  
Sercan Okutucu ◽  
Levent Şahiner ◽  
Naresh Maharjan ◽  
Elifcan Aladag ◽  
...  

2015 ◽  
Vol 28 (3) ◽  
pp. 627-636 ◽  
Author(s):  
Gustavo Henrique de Oliveira Mondoni ◽  
Luiz Carlos Marques Vanderlei ◽  
Bruno Saraiva ◽  
Franciele Marques Vanderlei

AbstractIntroduction It is known that physical exercise is beneficial and precipitates adjustments to the autonomic nervous system. However, the effect of exercise on cardiac autonomic modulation in children, despite its importance, is poorly investigated.Objective To bring together current information about the effects of exercise on heart rate variability in healthy and obese children.Methods The literature update was performed through a search for articles in the following databases; PubMed, PEDro, SciELO and Lilacs, using the descriptors “exercise” and “child” in conjunction with the descriptors “autonomic nervous system”, “sympathetic nervous system”, “parasympathetic nervous system” and also with no descriptor, but the key word of this study, “heart rate variability”, from January 2005 to December 2012.Results After removal of items that did not fit the subject of the study, a total of 9 articles were selected, 5 with healthy and 4 with obese children.Conclusion The findings suggest that exercise can act in the normalization of existing alterations in the autonomic nervous system of obese children, as well as serve as a preventative factor in healthy children, enabling healthy development of the autonomic nervous system until the child reaches adulthood.


1999 ◽  
Vol 29 (6) ◽  
pp. 590 ◽  
Author(s):  
Hae Ok Jung ◽  
Ki Bae Seung ◽  
Hyo Young Lim ◽  
Dong Heon Kang ◽  
Ki Yuk Chang ◽  
...  

2021 ◽  
Vol 10 (11) ◽  
pp. e294101119781
Author(s):  
Antonio Gomes da Silva Neto ◽  
Daniel Souza Ferreira Magalhães ◽  
Raduan Hage ◽  
Laurita dos Santos ◽  
José Carlos Cogo

The assessment of heart rate variability (HRV) by linear methods in conjunction with Poincaré plots can be useful for evaluating cardiac regulation by the autonomic nervous system and for the diagnosis and prognosis of heart disease in snakes. In this report, we describe an analysis of HRV in conscious adult corn snakes Pantherophis guttatus (P. guttatus).  The electrocardiogram (ECG) parameters were determined in adult corn snakes (8 females, 13 males) and used for HRV analysis, and the RR interval was analyzed by linear methods in the time and frequency domains. There was no sex-related difference in heart rate. However, significant differences were seen in the duration of the P, PR, and T waves and QRS complex; there was no difference in the QT interval. The values for the RR interval varied by 15.3% and 18.8% in male and female snakes, respectively, and there was considerable variation in the values for the high and low frequency domains. The changes in the time domain were attributed to regulation by the parasympathetic branch of the autonomic nervous system, in agreement with variations in the high and low frequency domains. The values for standard deviations 1 and 2 in Poincaré plots, as well as the values of the frequency domain, provide useful parameters for future studies of cardiac function in P. guttatus.


Sign in / Sign up

Export Citation Format

Share Document