O04 In vivo assessment of prevention of lung fibrosis using the pan-PPAR agonist lanifibranor in the TbRIIDk-fib mouse model of systemic sclerosis

Rheumatology ◽  
2019 ◽  
Vol 58 (Supplement_3) ◽  
Author(s):  
Emma Derrett-Smith ◽  
Xu Shi-Wen ◽  
David Abraham ◽  
Olivier Lacombe ◽  
Pierre Broqua ◽  
...  
2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Emma Derrett-Smith ◽  
Kristina E. N. Clark ◽  
Xu Shiwen ◽  
David J. Abraham ◽  
Rachel K. Hoyles ◽  
...  

Abstract Background The TβRII∆k-fib transgenic (TG) mouse model of scleroderma replicates key fibrotic and vasculopathic complications of systemic sclerosis through fibroblast-directed upregulation of TGFβ signalling. We have examined peroxisome proliferator-activated receptor (PPAR) pathway perturbation in this model and explored the impact of the pan-PPAR agonist lanifibranor on the cardiorespiratory phenotype. Methods PPAR pathway gene and protein expression differences from TG and WT sex-matched littermate mice were determined at baseline and following administration of one of two doses of lanifibranor (30 mg/kg or 100 mg/kg) or vehicle administered by daily oral gavage up to 4 weeks. The prevention of bleomycin-induced lung fibrosis and SU5416-induced pulmonary hypertension by lanifibranor was explored. Results Gene expression data were consistent with the downregulation of the PPAR pathway in the TβRII∆k-fib mouse model. TG mice treated with high-dose lanifibranor demonstrated significant protection from lung fibrosis after bleomycin and from right ventricular hypertrophy following induction of pulmonary hypertension by SU5416, despite no significant change in right ventricular systolic pressure. Conclusions In the TβRII∆k-fib mouse strain, treatment with 100 mg/kg lanifibranor reduces the development of lung fibrosis and right ventricular hypertrophy induced by bleomycin or SU5416, respectively. Reduced PPAR activity may contribute to the exaggerated fibroproliferative response to tissue injury in this transgenic model of scleroderma and its pulmonary complications.


PPAR Research ◽  
2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Andréa Tavares Dantas ◽  
Michelly Cristiny Pereira ◽  
Moacyr Jesus Barreto de Melo Rego ◽  
Laurindo Ferreira da Rocha ◽  
Ivan da Rocha Pitta ◽  
...  

Fibrosis is recognized as an important feature of many chronic diseases, such as systemic sclerosis (SSc), an autoimmune disease of unknown etiology, characterized by immune dysregulation and vascular injury, followed by progressive fibrosis affecting the skin and multiple internal organs. SSc has a poor prognosis because no therapy has been shown to reverse or arrest the progression of fibrosis, representing a major unmet medical need. Recently, antifibrotic effects of PPARγligands have been studiedin vitroandin vivoand some theories have emerged leading to new insights. Aberrant PPARγfunction seems to be implicated in pathological fibrosis in the skin and lungs. This antifibrotic effect is mainly related to the inhibition of TGF-β/Smad signal transduction but other pathways can be involved. This review focused on recent studies that identified PPARγas an important novel pathway with critical roles in regulating connective tissue homeostasis, with emphasis on skin and lung fibrosis and its role on systemic sclerosis.


2020 ◽  
Vol 21 (14) ◽  
pp. 5102
Author(s):  
Roberto Lande ◽  
Anna Mennella ◽  
Raffaella Palazzo ◽  
Immacolata Pietraforte ◽  
Katia Stefanantoni ◽  
...  

Systemic sclerosis (SSc) is characterized by skin/internal organ fibrosis, vasculopathy and autoimmunity. Chemokine (C-X-C motif) ligand 4 (CXCL4) is an SSc biomarker, predicting unfavorable prognosis and lung fibrosis. CXCL4 binds DNA/RNA and favors interferon (IFN)-α production by plasmacytoid dendritic cells (pDCs), contributing to the type I IFN (IFN-I) signature in SSc patients. However, whether CXCL4 is an autoantigen in SSc is unknown. Here, we show that at least half of SSc patients show consistent antibody reactivity to CXCL4. T-cell proliferation to CXCL4, tested in a limited number of patients, correlates with anti-CXCL4 antibody reactivity. Antibodies to CXCL4 mostly correlate with circulating IFN-α levels and are significantly higher in patients with lung fibrosis in two independent SSc cohorts. Antibodies to CXCL4 implement the CXCL4–DNA complex’s effect on IFN-α production by pDCs; CXCL4–DNA/RNA complexes stimulate purified human B-cells to become antibody-secreting plasma cells in vitro. These data indicate that CXCL4 is indeed an autoantigen in SSc and suggest that CXCL4, and CXCL4-specific autoantibodies, can fuel a harmful loop: CXCL4–DNA/RNA complexes induce IFN-α in pDCs and direct B-cell stimulation, including the secretion of anti-CXCL4 antibodies. Anti-CXCL4 antibodies may further increase pDC stimulation and IFN-α release in vivo, creating a vicious cycle which sustains the SSc IFN-I signature and general inflammation.


Blood ◽  
2020 ◽  
Vol 136 (6) ◽  
pp. 740-748 ◽  
Author(s):  
Stephen Ferrière ◽  
Ivan Peyron ◽  
Olivier D. Christophe ◽  
Charlotte Kawecki ◽  
Caterina Casari ◽  
...  

Abstract The bispecific antibody emicizumab is increasingly used for hemophilia A treatment. However, its specificity for human factors IX and X (FIX and FX) has limited its in vivo functional analysis to primate models of acquired hemophilia. Here, we describe a novel mouse model that allows emicizumab function to be examined. Briefly, FVIII-deficient mice received IV emicizumab 24 hours before tail-clip bleeding was performed. A second infusion with human FIX and FX, administered 5 minutes before bleeding, generated consistent levels of emicizumab (0.7-19 mg/dL for 0.5-10 mg/kg doses) and of both FIX and FX (85 and 101 U/dL, respectively, after dosing at 100 U/kg). Plasma from these mice display FVIII-like activity in assays (diluted activated partial thromboplastin time and thrombin generation), similar to human samples containing emicizumab. Emicizumab doses of 1.5 mg/kg and higher significantly reduced blood loss in a tail-clip–bleeding model using FVIII-deficient mice. However, reduction was incomplete compared with mice treated with human FVIII concentrate, and no difference in efficacy between doses was observed. From this model, we deducted FVIII-like activity from emicizumab that corresponded to a dose of 4.5 U of FVIII per kilogram (ie, 9.0 U/dL). Interestingly, combined with a low FVIII dose (5 U/kg), emicizumab provided enough additive activity to allow complete bleeding arrest. This model could be useful for further in vivo analysis of emicizumab.


2012 ◽  
Vol 203 (2) ◽  
pp. 292-297 ◽  
Author(s):  
Silvan M. Klein ◽  
Jody Vykoukal ◽  
Philipp Lechler ◽  
Katharina Zeitler ◽  
Sebastian Gehmert ◽  
...  

2017 ◽  
Vol 47 (5) ◽  
pp. 1260-1267 ◽  
Author(s):  
Dan Wu ◽  
Jun Lei ◽  
Bei Jia ◽  
Han Xie ◽  
Yan Zhu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document