scholarly journals The neural mechanisms of social reward in early psychosis

2019 ◽  
Vol 14 (8) ◽  
pp. 861-870 ◽  
Author(s):  
Anne-Kathrin J Fett ◽  
Elias Mouchlianitis ◽  
Paula M Gromann ◽  
Lucy Vanes ◽  
Sukhi S Shergill ◽  
...  

Abstract In chronic psychosis, reduced trust is associated with a neural insensitivity to social reward and reduced theory of mind (ToM). Here we investigate whether these mechanisms could underlie emerging social impairments in early psychosis. Twenty-two participants with early psychosis and 25 controls (male, 13–19 years) participated in two interactive trust games against a cooperative and unfair partner. Region of interest neuroimaging analyses included right caudate, medial prefrontal cortex (mPFC) and right temporoparietal junction (rTPJ), involved in reward and ToM processing. Both groups showed similar levels of trust (i.e. investments). However, individuals with psychosis failed to activate the caudate differentially in response to cooperation and unfairness while making decisions to trust. During cooperative returns, patients showed reduced and controls increased caudate activation. Patients demonstrated greater rTPJ activation than controls, possibly pointing towards compensatory mechanisms. Effects were associated with Wechsler Abbreviated Scale of Intelligence vocabulary scores. No group differences emerged in mPFC activation. Early psychosis is associated with an aberrant neural sensitivity to social reward. This could foster reduced social motivation and social isolation. Absent behavioural differences in early, relative to chronic psychosis could indicate that trust is achieved through increased compensatory demand on ToM.

2020 ◽  
Author(s):  
Lukas Lengersdorff ◽  
Isabella Wagner ◽  
Claus Lamm

Humans learn quickly which actions cause them harm. As social beings, we also need to learn to avoid actions that hurt others. It is currently unknown if humans are as good at learning to avoid others' harm (prosocial learning) as they are at learning to avoid self-harm (self-relevant learning). Moreover, it remains unclear how the neural mechanisms of prosocial learning differ from those of self-relevant learning. In this fMRI study, 96 male human participants learned to avoid painful stimuli either for themselves or for another individual. We found that participants performed more optimally when learning for the other than for themselves. Computational modeling revealed that this could be explained by an increased sensitivity to subjective values of choice alternatives during prosocial learning. Increased value-sensitivity was further associated with empathic traits. On the neural level, higher value-sensitivity during prosocial learning was associated with stronger engagement of the ventromedial prefrontal cortex (VMPFC) during valuation. Moreover, the VMPFC exhibited higher connectivity with the right temporoparietal junction during prosocial, compared to self-relevant, choices. Our results suggest that humans are particularly adept at learning to protect others from harm. This ability appears implemented by neural mechanisms overlapping with those supporting self-relevant learning, but with the additional recruitment of structures associated to the social brain. Our findings contrasts with recent proposals that humans are egocentrically biased when learning to obtain monetary rewards for self or others. Prosocial tendencies may thus trump the egocentric bias in learning when another person's physical integrity is at stake.


2019 ◽  
Vol 45 (Supplement_2) ◽  
pp. S93-S93
Author(s):  
Anne-Kathrin Fett ◽  
Elias Mouchlianitis ◽  
Paula Gromann ◽  
Lucy Vanes ◽  
Sukhi Shergill ◽  
...  

2021 ◽  
Vol 11 (7) ◽  
pp. 863
Author(s):  
Michael Schaefer ◽  
Anja Kühnel ◽  
Franziska Rumpel ◽  
Matti Gärtner

Do empathic individuals behave more prosocially? When we think of highly empathic individuals, we tend to assume that it is likely that those people will also help others. Most theories on empathy reflect this common understanding and claim that the personality trait empathy includes the willingness to help others, but it remains a matter of debate whether empathic individuals really help more. In economics, a prominent demonstration that our behavior is not always based on pure self-interest is the Dictator Game, which measures prosocial decisions in an allocation task. This economic game shows that we are willing to give money to strangers we do not know anything about. The present study aimed to test the relationship between dispositional empathy and prosocial acting by examining the neural underpinnings of prosocial behavior in the Dictator Game. Forty-one participants played different rounds of the Dictator Game while being scanned with functional magnetic resonance imaging (fMRI). Brain activation in the right temporoparietal junction area was associated with prosocial acting (number of prosocial decisions) and associated with empathic concern. Behavioral results demonstrated that empathic concern and personal distress predicted the number of prosocial decisions, but in a negative way. Correlations with the amount of money spent did not show any significant relationships. We discuss the results in terms of group-specific effects of affective empathy. Our results shed further light on the complex behavioral and neural mechanisms driving altruistic choices.


2020 ◽  
Vol 32 (6) ◽  
pp. 1130-1141
Author(s):  
Anne-Sophie Käsbauer ◽  
Paola Mengotti ◽  
Gereon R. Fink ◽  
Simone Vossel

Although multiple studies characterized the resting-state functional connectivity (rsFC) of the right temporoparietal junction (rTPJ), little is known about the link between rTPJ rsFC and cognitive functions. Given a putative involvement of rTPJ in both reorienting of attention and the updating of probabilistic beliefs, this study characterized the relationship between rsFC of rTPJ with dorsal and ventral attention systems and these two cognitive processes. Twenty-three healthy young participants performed a modified location-cueing paradigm with true and false prior information about the percentage of cue validity to assess belief updating and attentional reorienting. Resting-state fMRI was recorded before and after the task. Seed-based correlation analysis was employed, and correlations of each behavioral parameter with rsFC before the task, as well as with changes in rsFC after the task, were assessed in an ROI-based approach. Weaker rsFC between rTPJ and right intraparietal sulcus before the task was associated with relatively faster updating of the belief that the cue will be valid after false prior information. Moreover, relatively faster belief updating, as well as faster reorienting, were related to an increase in the interhemispheric rsFC between rTPJ and left TPJ after the task. These findings are in line with task-based connectivity studies on related attentional functions and extend results from stroke patients demonstrating the importance of interhemispheric parietal interactions for behavioral performance. The present results not only highlight the essential role of parietal rsFC for attentional functions but also suggest that cognitive processing during a task changes connectivity patterns in a performance-dependent manner.


2021 ◽  
Author(s):  
Tao Yu ◽  
Shihui Han

Perceived cues signaling others' pain induce empathy that in turn motivates altruistic behavior toward those who appear suffering. This perception-emotion-behavior reactivity is the core of human altruism but does not always occur in real life situations. Here, by integrating behavioral and multimodal neuroimaging measures, we investigate neural mechanisms underlying the functional role of beliefs of others' pain in modulating empathy and altruism. We show evidence that decreasing (or enhancing) beliefs of others' pain reduces (or increases) subjective estimation of others' painful emotional states and monetary donations to those who show pain expressions. Moreover, decreasing beliefs of others' pain attenuates neural responses to perceived cues signaling others' pain within 200 ms after stimulus onset and modulate neural responses to others' pain in the frontal cortices and temporoparietal junction. Our findings highlight beliefs of others' pain as a fundamental cognitive basis of human empathy and altruism and unravel the intermediate neural architecture.


2019 ◽  
Vol 122 (4) ◽  
pp. 1735-1744 ◽  
Author(s):  
Peter H. Donaldson ◽  
Melissa Kirkovski ◽  
Joel S. Yang ◽  
Soukayna Bekkali ◽  
Peter G. Enticott

The right temporoparietal junction (rTPJ) is a multisensory integration hub that is increasingly utilized as a target of stimulation studies exploring its rich functional network roles and potential clinical applications. While transcranial direct current stimulation (tDCS) is frequently employed in such studies, there is still relatively little known regarding its local and network neurophysiological effects, particularly at important nonmotor sites such as the rTPJ. The current study applied either anodal, cathodal, or sham high-definition tDCS to the rTPJ of 53 healthy participants and used offline EEG to assess the impacts of stimulation on resting state (eyes open and eyes closed) band power and coherence. Temporoparietal and central region delta power was increased after anodal stimulation (the latter trend only), whereas cathodal stimulation increased frontal region delta and theta power. Increased coherence between right and left temporoparietal regions was also observed after anodal stimulation. All significant effects occurred in the eyes open condition. These findings are discussed with reference to domain general and mechanistic theories of rTPJ function. Low-frequency oscillatory activity may exert long-range inhibitory network influences that enable switching between and integration of endogenous/exogenous processing streams. NEW & NOTEWORTHY Through the novel use of high-definition transcranial direct current stimulation (tDCS) and EEG, we provide evidence that both anodal and cathodal stimulation of the right temporoparietal junction selectively modulate slow-wave power and coherence in distributed network regions of known relevance to proposed temporoparietal junction functionality. These results also provide direct evidence of the ability of tDCS to modulate oscillatory activity at a long-range network level, which may have explanatory power in terms of both neurophysiological and behavioral effects.


Sign in / Sign up

Export Citation Format

Share Document