scholarly journals A review of the relationship between eating behavior, obesity and functional brain network organization

2019 ◽  
Vol 15 (10) ◽  
pp. 1157-1181 ◽  
Author(s):  
Shannon D Donofry ◽  
Chelsea M Stillman ◽  
Kirk I Erickson

Abstract Obesity is a major public health issue affecting nearly 40% of American adults and is associated with increased mortality and elevated risk for a number of physical and psychological illnesses. Obesity is associated with impairments in executive functions such as decision making and inhibitory control, as well as in reward valuation, which is thought to contribute to difficulty sustaining healthy lifestyle behaviors, including adhering to a healthy diet. Growing evidence indicates that these impairments are accompanied by disruptions in functional brain networks, particularly those that support self-regulation, reward valuation, self-directed thinking and homeostatic control. Weight-related differences in task-evoked and resting-state connectivity have most frequently been noted in the executive control network (ECN), salience network (SN) and default mode network (DMN), with obesity generally being associated with weakened connectivity in the ECN and enhanced connectivity in the SN and DMN. Similar disruptions have been observed in the much smaller literature examining the relationship between diet and disordered eating behaviors on functional network organization. The purpose of this narrative review was to summarize what is currently known about how obesity and eating behavior relate to functional brain networks, describe common patterns and provide recommendations for future research based on the identified gaps in knowledge.

2021 ◽  
pp. 1-11
Author(s):  
Yi Liu ◽  
Zhuoyuan Li ◽  
Xueyan Jiang ◽  
Wenying Du ◽  
Xiaoqi Wang ◽  
...  

Background: Evidence suggests that subjective cognitive decline (SCD) individuals with worry have a higher risk of cognitive decline. However, how SCD-related worry influences the functional brain network is still unknown. Objective: In this study, we aimed to explore the differences in functional brain networks between SCD subjects with and without worry. Methods: A total of 228 participants were enrolled from the Sino Longitudinal Study on Cognitive Decline (SILCODE), including 39 normal control (NC) subjects, 117 SCD subjects with worry, and 72 SCD subjects without worry. All subjects completed neuropsychological assessments, APOE genotyping, and resting-state functional magnetic resonance imaging (rs-fMRI). Graph theory was applied for functional brain network analysis based on both the whole brain and default mode network (DMN). Parameters including the clustering coefficient, shortest path length, local efficiency, and global efficiency were calculated. Two-sample T-tests and chi-square tests were used to analyze differences between two groups. In addition, a false discovery rate-corrected post hoc test was applied. Results: Our analysis showed that compared to the SCD without worry group, SCD with worry group had significantly increased functional connectivity and shortest path length (p = 0.002) and a decreased clustering coefficient (p = 0.013), global efficiency (p = 0.001), and local efficiency (p <  0.001). The above results appeared in both the whole brain and DMN. Conclusion: There were significant differences in functional brain networks between SCD individuals with and without worry. We speculated that worry might result in alterations of the functional brain network for SCD individuals and then result in a higher risk of cognitive decline.


2020 ◽  
Vol 30 (10) ◽  
pp. 2050051
Author(s):  
Feng Fang ◽  
Thomas Potter ◽  
Thinh Nguyen ◽  
Yingchun Zhang

Emotion and affect play crucial roles in human life that can be disrupted by diseases. Functional brain networks need to dynamically reorganize within short time periods in order to efficiently process and respond to affective stimuli. Documenting these large-scale spatiotemporal dynamics on the same timescale they arise, however, presents a large technical challenge. In this study, the dynamic reorganization of the cortical functional brain network during an affective processing and emotion regulation task is documented using an advanced multi-model electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) technique. Sliding time window correlation and [Formula: see text]-means clustering are employed to explore the functional brain connectivity (FC) dynamics during the unaltered perception of neutral (moderate valence, low arousal) and negative (low valence, high arousal) stimuli and cognitive reappraisal of negative stimuli. Betweenness centralities are computed to identify central hubs within each complex network. Results from 20 healthy subjects indicate that the cortical mechanism for cognitive reappraisal follows a ‘top-down’ pattern that occurs across four brain network states that arise at different time instants (0–170[Formula: see text]ms, 170–370[Formula: see text]ms, 380–620[Formula: see text]ms, and 620–1000[Formula: see text]ms). Specifically, the dorsolateral prefrontal cortex (DLPFC) is identified as a central hub to promote the connectivity structures of various affective states and consequent regulatory efforts. This finding advances our current understanding of the cortical response networks of reappraisal-based emotion regulation by documenting the recruitment process of four functional brain sub-networks, each seemingly associated with different cognitive processes, and reveals the dynamic reorganization of functional brain networks during emotion regulation.


2010 ◽  
Vol 20 (06) ◽  
pp. 1703-1721 ◽  
Author(s):  
FRANÇOIS LAURENT ◽  
MICHEL BESSERVE ◽  
LINE GARNERO ◽  
MATTHIEU PHILIPPE ◽  
GENEVIÈVE FLORENCE ◽  
...  

We classified performance-related mental states from EEG-derived measurements. We investigated the usefulness of massively distributed source reconstruction, comparing scalp and cortical scales. This approach provides a more detailed picture of the functional brain networks underlying the changes related to the mental state of interest. Local and distant synchrony measurements (coherence, phase locking value) were used for both scalp measurements and cortical current density sources, and were fed into a SVM-based classifier. We designed two simulations where classification scores increased when our 60-electrode scalp measurements were reconstructed on 60 sources and on a 500-source cortex. Source reconstruction appeared to be most useful in these simulations, in particular, when distant synchronies were involved and local synchronies did not prevail. Despite the simplicity of the model used, certain flaws in accuracy were observed in the localization of informative activities, due to the relationship between amplitude and phase for mixed signals. Our results with real EEG data suggested that the phenomenon of interest was characterized merely by modulations in local amplitudes, but also in strength of distant couplings. After source reconstruction, classification rates also increased for real EEG data when seeking distant phase-related couplings. When reconstructing a large number of sources, the regularization coefficient should be carefully selected on a subject-by-subject basis. We showed that training classifiers using such high-dimension data is useful for localizing discriminating patterns of activity.


Author(s):  
Hope Peterson ◽  
Rhiannon E Mayhugh ◽  
Mohsen Bahrami ◽  
W Jack Rejeski ◽  
Sean L Simpson ◽  
...  

Alcohol consumption is now common practice worldwide, and functional brain networks are beginning to reveal the complex interactions observed with alcohol consumption and abstinence. The autonomic nervous system (ANS) has a well-documented relationship with alcohol use, and a growing body of research is finding links between the ANS and functional brain networks. This study recruited everyday drinkers in an effort to uncover the relationship between alcohol abstinence, ANS function, and whole brain functional brain networks. Participants (n=29), 24-60 years-of-age, consumed moderate levels of alcohol regularly (males 2.4 (&plusmn;0.26) drinks/day, females 2.3 (&plusmn;0.96) drinks/day). ANS function, specifically cardiac vagal tone, was assessed using the Porges-Bohrer method for calculating respiratory sinus arrhythmia (PBRSA). Functional brain networks were generated from resting-state MRI scans obtained following 3-day periods of typical consumption and abstinence. A multi-task mixed-effects regression model determined the influences of HRV and drinking state on functional network connectivity. Results showed differences in the relationship between the strength of network connections and clustering coefficients across drinking states, moderated by PBRSA. Increases in connection strength between highly clustered nodes during abstinence as PBRSA increases demonstrates a greater possible range of topological configurations at high PBRSA values. This novel finding begins to shed light on the complex interactions between typical alcohol abstinence and physiological responses of the central and autonomic nervous system.


2018 ◽  
Vol 26 (2) ◽  
pp. 188-200 ◽  
Author(s):  
Ismail Koubiyr ◽  
Mathilde Deloire ◽  
Pierre Besson ◽  
Pierrick Coupé ◽  
Cécile Dulau ◽  
...  

Background: There is a lack of longitudinal studies exploring the topological organization of functional brain networks at the early stages of multiple sclerosis (MS). Objective: This study aims to assess potential brain functional reorganization at rest in patients with CIS (PwCIS) after 1 year of evolution and to characterize the dynamics of functional brain networks at the early stage of the disease. Methods: We prospectively included 41 PwCIS and 19 matched healthy controls (HCs). They were scanned at baseline and after 1 year. Using graph theory, topological metrics were calculated for each region. Hub disruption index was computed for each metric. Results: Hub disruption indexes of degree and betweenness centrality were negative at baseline in patients ( p < 0.05), suggesting brain reorganization. After 1 year, hub disruption indexes for degree and betweenness centrality were still negative ( p < 0.00001), but such reorganization appeared more pronounced than at baseline. Different brain regions were driving these alterations. No global efficiency differences were observed between PwCIS and HCs either at baseline or at 1 year. Conclusion: Dynamic changes in functional brain networks appear at the early stages of MS and are associated with the maintenance of normal global efficiency in the brain, suggesting a compensatory effect.


2015 ◽  
Vol 25 (03) ◽  
pp. 1550034 ◽  
Author(s):  
Adrián Navas ◽  
David Papo ◽  
Stefano Boccaletti ◽  
F. Del-Pozo ◽  
Ricardo Bajo ◽  
...  

We investigate how hubs of functional brain networks are modified as a result of mild cognitive impairment (MCI), a condition causing a slight but noticeable decline in cognitive abilities, which sometimes precedes the onset of Alzheimer's disease. We used magnetoencephalography (MEG) to investigate the functional brain networks of a group of patients suffering from MCI and a control group of healthy subjects, during the execution of a short-term memory task. Couplings between brain sites were evaluated using synchronization likelihood, from which a network of functional interdependencies was constructed and the centrality, i.e. importance, of their nodes was quantified. The results showed that, with respect to healthy controls, MCI patients were associated with decreases and increases in hub centrality respectively in occipital and central scalp regions, supporting the hypothesis that MCI modifies functional brain network topology, leading to more random structures.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Jinlong Hu ◽  
Lijie Cao ◽  
Tenghui Li ◽  
Shoubin Dong ◽  
Ping Li

Abstract Background Autism spectrum disorders (ASD) imply a spectrum of symptoms rather than a single phenotype. ASD could affect brain connectivity at different degree based on the severity of the symptom. Given their excellent learning capability, graph neural networks (GNN) methods have recently been used to uncover functional connectivity patterns and biological mechanisms in neuropsychiatric disorders, such as ASD. However, there remain challenges to develop an accurate GNN learning model and understand how specific decisions of these graph models are made in brain network analysis. Results In this paper, we propose a graph attention network based learning and interpreting method, namely GAT-LI, which learns to classify functional brain networks of ASD individuals versus healthy controls (HC), and interprets the learned graph model with feature importance. Specifically, GAT-LI includes a graph learning stage and an interpreting stage. First, in the graph learning stage, a new graph attention network model, namely GAT2, uses graph attention layers to learn the node representation, and a novel attention pooling layer to obtain the graph representation for functional brain network classification. We experimentally compared GAT2 model’s performance on the ABIDE I database from 1035 subjects against the classification performances of other well-known models, and the results showed that the GAT2 model achieved the best classification performance. We experimentally compared the influence of different construction methods of brain networks in GAT2 model. We also used a larger synthetic graph dataset with 4000 samples to validate the utility and power of GAT2 model. Second, in the interpreting stage, we used GNNExplainer to interpret learned GAT2 model with feature importance. We experimentally compared GNNExplainer with two well-known interpretation methods including Saliency Map and DeepLIFT to interpret the learned model, and the results showed GNNExplainer achieved the best interpretation performance. We further used the interpretation method to identify the features that contributed most in classifying ASD versus HC. Conclusion We propose a two-stage learning and interpreting method GAT-LI to classify functional brain networks and interpret the feature importance in the graph model. The method should also be useful in the classification and interpretation tasks for graph data from other biomedical scenarios.


2021 ◽  
Vol 11 (8) ◽  
pp. 1066
Author(s):  
Han Li ◽  
Qizhong Zhang ◽  
Ziying Lin ◽  
Farong Gao

Epilepsy is a chronic neurological disorder which can affect 65 million patients worldwide. Recently, network based analyses have been of great help in the investigation of seizures. Now graph theory is commonly applied to analyze functional brain networks, but functional brain networks are dynamic. Methods based on graph theory find it difficult to reflect the dynamic changes of functional brain network. In this paper, an approach to extracting features from brain functional networks is presented. Dynamic functional brain networks can be obtained by stacking multiple functional brain networks on the time axis. Then, a tensor decomposition method is used to extract features, and an ELM classifier is introduced to complete epilepsy prediction. In the prediction of epilepsy, the accuracy and F1 score of the feature extracted by tensor decomposition are higher than the degree and clustering coefficient. The features extracted from the dynamic functional brain network by tensor decomposition show better and more comprehensive performance than degree and clustering coefficient in epilepsy prediction.


2021 ◽  
Vol 15 ◽  
Author(s):  
Jared A. Rowland ◽  
Jennifer R. Stapleton-Kotloski ◽  
Greg E. Alberto ◽  
April T. Davenport ◽  
Phillip M. Epperly ◽  
...  

Purpose: A fundamental question for Alcohol use disorder (AUD) is how and when naïve brain networks are reorganized in response to alcohol consumption. The current study aimed to determine the progression of alcohol’s effect on functional brain networks during transition from the naïve state to chronic consumption.Procedures: Resting-state brain networks of six female rhesus macaque (Macaca mulatta) monkeys were acquired using magnetoencephalography (MEG) prior to alcohol exposure and after free-access to alcohol using a well-established model of chronic heavy alcohol consumption. Functional brain network metrics were derived at each time point.Results: The average connection frequency (p &lt; 0.024) and membership of the Rich Club (p &lt; 0.022) changed significantly over time. Metrics describing network topology remained relatively stable from baseline to free-access drinking. The minimum degree of the Rich Club prior to alcohol exposure was significantly predictive of future free-access drinking (r = −0.88, p &lt; 0.001).Conclusions: Results suggest naïve brain network characteristics may be used to predict future alcohol consumption, and that alcohol consumption alters functional brain networks, shifting hubs and Rich Club membership away from previous regions in a non-systematic manner. Further work to refine these relationships may lead to the identification of a high-risk drinking phenotype.


2018 ◽  
Author(s):  
Fernando A. N. Santos ◽  
Ernesto P. Raposo ◽  
Maurício D. Coutinho-Filho ◽  
Mauro Copelli ◽  
Cornelis J. Stam ◽  
...  

AbstractFunctional brain networks are often constructed by quantifying correlations among brain regions. Their topological structure includes nodes, edges, triangles and even higher-dimensional objects. Topological data analysis (TDA) is the emerging framework to process datasets under this perspective. In parallel, topology has proven essential for understanding fundamental questions in physics. Here we report the discovery of topological phase transitions in functional brain networks by merging concepts from TDA, topology, geometry, physics, and network theory. We show that topological phase transitions occur when the Euler entropy has a singularity, which remarkably coincides with the emergence of multidimensional topological holes in the brain network. Our results suggest that a major alteration in the pattern of brain correlations can modify the signature of such transitions, and may point to suboptimal brain functioning. Due to the universal character of phase transitions and noise robustness of TDA, our findings open perspectives towards establishing reliable topological and geometrical biomarkers of individual and group differences in functional brain network organization.


Sign in / Sign up

Export Citation Format

Share Document