scholarly journals Aberrant Frontostriatal Connectivity in Negative Symptoms of Schizophrenia

2018 ◽  
Vol 45 (5) ◽  
pp. 1051-1059 ◽  
Author(s):  
Dinesh K Shukla ◽  
Joshua John Chiappelli ◽  
Hemalatha Sampath ◽  
Peter Kochunov ◽  
Stephanie M Hare ◽  
...  

AbstractNegative symptoms represent a distinct component of psychopathology in schizophrenia (SCZ) and are a stable construct over time. Although impaired frontostriatal connectivity has been frequently described in SCZ, its link with negative symptoms has not been carefully studied. We tested the hypothesis that frontostriatal connectivity at rest may be associated with the severity of negative symptoms in SCZ. Resting state functional connectivity (rsFC) data from 95 mostly medicated patients with SCZ and 139 healthy controls (HCs) were acquired. Negative symptoms were assessed using the Brief Negative Symptom Scale. The study analyzed voxel-wise rsFC between 9 frontal “seed regions” and the entire striatum, with the intention to reduce potential biases introduced by predefining any single frontal or striatal region. SCZ showed significantly reduced rsFC between the striatum and the right medial and lateral orbitofrontal cortex (OFC), lateral prefrontal cortex, and rostral anterior cingulate cortex compared with HCs. Further, rsFC between the striatum and the right medial OFC was significantly associated with negative symptom severity. The involved striatal regions were primarily at the ventral putamen. Our results support reduced frontostriatal functional connectivity in SCZ and implicate striatal connectivity with the right medial OFC in negative symptoms. This task-independent resting functional magnetic resonance imaging study showed that medial OFC–striatum functional connectivity is reduced in SCZ and associated with severity of negative symptoms. This finding supports a significant association between frontostriatal connectivity and negative symptoms and thus may provide a potential circuitry-level biomarker to study the neurobiological mechanisms of negative symptoms.

2021 ◽  
Author(s):  
Timothy P. Morris ◽  
Aaron Kucyi ◽  
Sheeba Arnold Anteraper ◽  
Maiya Rachel Geddes ◽  
Alfonso Nieto-Castañon ◽  
...  

AbstractInformation about a person’s available energy resources is integrated in daily behavioral choices that weigh motor costs against expected rewards. It has been posited that humans have an innate attraction towards effort minimization and that executive control is required to overcome this prepotent disposition. With sedentary behaviors increasing at the cost of millions of dollars spent in health care and productivity losses due to physical inactivity-related deaths, understanding the predictors of sedentary behaviors will improve future intervention development and precision medicine approaches. In 64 healthy older adults participating in a 6-month aerobic exercise intervention, we use neuroimaging (resting state functional connectivity), baseline measures of executive function and accelerometer measures of time spent sedentary to predict future changes in objectively measured time spent sedentary in daily life. Using cross-validation and bootstrap resampling, our results demonstrate that functional connectivity between 1) the anterior cingulate cortex and the supplementary motor area and 2) the right anterior insula and the left temporoparietal/temporooccipital junction, predict changes in time spent sedentary, whereas baseline cognitive, behavioral and demographic measures do not. Previous research has shown activation in and between the anterior cingulate and supplementary motor area as well as in the right anterior insula during effort avoidance and tasks that integrate motor costs and reward benefits in effort-based decision making. Our results add important knowledge toward understanding mechanistic associations underlying complex sedentary behaviors.


2018 ◽  
Author(s):  
Kristina M. Deligiannidis ◽  
Christina L. Fales ◽  
Aimee R. Kroll-Desrosiers ◽  
Scott A. Shaffer ◽  
Vanessa Villamarin ◽  
...  

ABSTRACTPostpartum depression (PPD) is associated with abnormalities in resting-state functional connectivity (RSFC) but the underlying neurochemistry is unclear. We hypothesized that peripartum GABAergic neuroactive steroids (NAS) are related to cortical GABA concentrations and RSFC in PPD as compared to healthy comparison women (HCW). To test this, we measured RSFC with fMRI and GABA+/Creatine (Cr) concentrations with proton magnetic resonance spectroscopy (1H MRS) in the pregenual anterior cingulate (pgACC) and occipital cortices (OCC) and quantified peripartum plasma NAS. We examined between-group differences in RSFC and the relationship between cortical GABA+/Cr concentrations with RSFC. We investigated the relationship between NAS, RSFC and cortical GABA+/Cr concentrations. Within the default mode network (DMN) an area of the dorsomedial prefrontal cortex (DMPFC) had greater connectivity with the rest of the DMN in PPD (peak voxel: MNI coordinates (2, 58, 32), p=0.002) and was correlated to depression scores (peak HAM-D17 voxel: MNI coordinates (0, 60, 34), p=0.008). pgACC GABA+/Cr correlated positively with DMPFC RSFC in a region spanning the right anterior/posterior insula and right temporal pole (r=+0.661, p=0.000). OCC GABA+/Cr correlated positively with regions spanning both amygdalae (right amygdala: r=+0.522, p=0.000; left amygdala: r=+0.651, p=0.000) as well as superior parietal areas. Plasma allopregnanolone was higher in PPD (p=0.03) and positively correlated with intra DMPFC connectivity (r=+0.548, p=0.000) but not GABA+/Cr. These results provide initial evidence that PPD is associated with altered DMN connectivity; cortical GABA+/Cr concentrations are associated with postpartum RSFC and allopregnanolone is associated with postpartum intra-DMPFC connectivity.


2021 ◽  
Vol 11 (11) ◽  
pp. 1539
Author(s):  
Gianluca Cruciani ◽  
Maddalena Boccia ◽  
Vittorio Lingiardi ◽  
Guido Giovanardi ◽  
Pietro Zingaretti ◽  
...  

Studies comparing organized (O) and unresolved/disorganized (UD) attachment have consistently shown structural and functional brain abnormalities, although whether and how attachment patterns may affect resting state functional connectivity (RSFC) is still little characterized. Here, we investigated RSFC of temporal and limbic regions of interest for UD attachment. Participants’ attachment was classified via the Adult Attachment Interview, and all participants underwent clinical assessment. Functional magnetic resonance imaging data were collected from 11 UD individuals and seven matched O participants during rest. A seed-to-voxel analysis was performed, including the anterior and the posterior cingulate cortex, the bilateral insula, amygdala and hippocampus as seed regions. No group differences in the clinical scales emerged. Compared to O, the UD group showed lower RSFC between the left amygdala and the left cerebellum (lobules VIII), and lower functional coupling between the right hippocampus and the posterior portion of the right middle temporal gyrus. Moreover, UD participants showed higher RSFC between the right amygdala and the anterior cingulate cortex. Our findings suggest RSFC alterations in regions associated with encoding of salient events, emotion processing, memories retrieval and self-referential processing in UD participants, highlighting the potential role of attachment experiences in shaping brain abnormalities also in non-clinical UD individuals.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Haimeng Hu ◽  
Yining Lyu ◽  
Shihong Li ◽  
Zheng Yuan ◽  
Chuntao Ye ◽  
...  

Previous functional magnetic resonance imaging (fMRI) analyses have shown that the dorsal attention network (DAN) is involved in the pathophysiological changes of tinnitus, but few relevant studies have been conducted, and the conclusions to date are not uniform. The purpose of this research was to test whether there is a change in intrinsic functional connectivity (FC) patterns between the DAN and other brain regions in tinnitus patients. Thirty-one patients with persistent tinnitus and thirty-three healthy controls were enrolled in this study. A group independent component analysis (ICA), degree centrality (DC) analysis, and seed-based FC analysis were conducted. In the group ICA, the tinnitus patients showed increased connectivity in the left superior parietal gyrus in the DAN compared to the healthy controls. Compared with the healthy controls, the tinnitus patients showed increased DC in the left inferior parietal gyrus and decreased DC in the left precuneus within the DAN. The clusters within the DAN with significant differences in the ICA or DC analysis between the tinnitus patients and the healthy controls were selected as regions of interest (ROIs) for seeds. The tinnitus patients exhibited significantly increased FC from the left superior parietal gyrus to several brain regions, including the left inferior parietal gyrus, the left superior marginal gyrus, and the right superior frontal gyrus, and decreased FC to the right anterior cingulate cortex. The tinnitus patients exhibited decreased FC from the left precuneus to the left inferior occipital gyrus, left calcarine cortex, and left superior frontal gyrus compared with the healthy controls. The findings of this study show that compared with healthy controls, tinnitus patients have altered functional connections not only within the DAN but also between the DAN and other brain regions. These results suggest that it may be possible to improve the disturbance and influence of tinnitus by regulating the DAN.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jun Cao ◽  
Xiaorong Chen ◽  
Jianmei Chen ◽  
Ming Ai ◽  
Yao Gan ◽  
...  

Suicide is a leading cause of death among youth and is strongly associated with major depressive disorder (MDD). However, the neurobiological underpinnings of suicidal behaviour and the identification of risk for suicide in young depressed patients are not yet well-understood. In this study, we used a seed-based correlation analysis to investigate the differences in resting-state functional connectivity (RSFC) in depressed youth with or without a history of suicide attempts and healthy controls (HCs). Suicidal attempters (ATT group, n = 35), non-suicide attempters (NAT group, n = 18), and HCs exhibited significantly different RSFC patterns with the left superior prefrontal gyrus (L-SFG) and left middle prefrontal gyrus (L-MFG) serving as the regions of interest (ROIs). The ATT group showed decreased RSFC of the left middle frontal gyrus with the left superior parietal gyrus compared to the NAT and HC groups. Decreased RSFC between the left superior frontal gyrus and the right anterior cingulate cortex (rACC) was found in the ATT group compared to the NAT and HC groups. Furthermore, the left prefrontal-parietal connectivity was associated with suicidal ideation and levels of impulsivity, but RSFC of the left prefrontal cortex with the rACC was correlated exclusively with impulsivity levels and was not related to suicidal ideation in the ATT group. Our results demonstrated that altered RSFC of the prefrontal-parietal and prefrontal-rACC regions was associated with suicide attempts in depressed youth, and state-related deficits in their interconnectivity may contribute to traits, such as cognitive impairments and impulsivity to facilitate suicidal acts. Our findings suggest that the neural correlates of suicidal behaviours might be dissociable from those related to the severity of current suicidal ideation. Neural circuits underlying suicide attempts differ from those that underlie suicidal ideation.


Author(s):  
Matti Gärtner ◽  
Anne Weigand ◽  
Milan Scheidegger ◽  
Mick Lehmann ◽  
Patrik O. Wyss ◽  
...  

AbstractKetamine exerts its rapid antidepressant effects via modulation of the glutamatergic system. While numerous imaging studies have investigated the effects of ketamine on a functional macroscopic brain level, it remains unclear how altered glutamate metabolism and changes in brain function are linked. To shed light on this topic we here conducted a multimodal imaging study in healthy volunteers (N = 23) using resting state fMRI and proton (1H) magnetic resonance spectroscopy (MRS) to investigate linkage between metabolic and functional brain changes induced by ketamine. Subjects were investigated before and during an intravenous ketamine infusion. The MRS voxel was placed in the pregenual anterior cingulate cortex (pgACC), as this region has been repeatedly shown to be involved in ketamine’s effects. Our results showed functional connectivity changes from the pgACC to the right frontal pole and anterior mid cingulate cortex (aMCC). Absolute glutamate and glutamine concentrations in the pgACC did not differ significantly from baseline. However, we found that stronger pgACC activation during ketamine was linked to lower glutamine concentration in this region. Furthermore, reduced functional connectivity between pgACC and aMCC was related to increased pgACC activation and reduced glutamine. Our results thereby demonstrate how multimodal investigations in a single brain region could help to advance our understanding of the association between metabolic and functional changes.


2018 ◽  
Author(s):  
D.A. Pisner ◽  
J. Shumake ◽  
C.G. Beevers ◽  
D.M. Schnyer

AbstractDepressive Rumination (DR), which involves a repetitive focus on one’s distress, has been linked to alterations in functional connectivity of the ‘triple-network’, consisting of Default-Mode, Salience, and Executive Control networks. A structural basis for these functional alterations that can dually explain DR’s persistence as a stable trait remains unexplored, however. Using diffusion and functional Magnetic Resonance Imaging, we investigated multimodal relationships between DR severity, white-matter microstructure, and resting-state functional connectivity in depressed adults, and then directly replicated our results in a phenotypically-matched, independent sample (total N = 78). Among the fully-replicated findings, DR severity was associated with: (a) global microstructure of the right Superior Longitudinal Fasciculus and local microstructure of distributed primary-fiber and crossing-fiber white-matter; (b) an imbalance of functional connectivity segregation and integration of the triple-network; and (c) ‘multi-layer’ associations linking these microstructural and functional connectivity biomarkers to one another. Taken together, the results provide reproducible evidence for a multi-layer, microstructural-functional network model of rumination in the depressed brain.


2018 ◽  
Vol 48 (15) ◽  
pp. 2492-2499 ◽  
Author(s):  
J. Ferri ◽  
J. M. Ford ◽  
B. J. Roach ◽  
J. A. Turner ◽  
T. G. van Erp ◽  
...  

AbstractBackgroundSchizophrenia (SZ) is a severe neuropsychiatric disorder associated with disrupted connectivity within the thalamic-cortico-cerebellar network. Resting-state functional connectivity studies have reported thalamic hypoconnectivity with the cerebellum and prefrontal cortex as well as thalamic hyperconnectivity with sensory cortical regions in SZ patients compared with healthy comparison participants (HCs). However, fundamental questions remain regarding the clinical significance of these connectivity abnormalities.MethodResting state seed-based functional connectivity was used to investigate thalamus to whole brain connectivity using multi-site data including 183 SZ patients and 178 matched HCs. Statistical significance was based on a voxel-level FWE-corrected height threshold of p < 0.001. The relationships between positive and negative symptoms of SZ and regions of the brain demonstrating group differences in thalamic connectivity were examined.ResultsHC and SZ participants both demonstrated widespread positive connectivity between the thalamus and cortical regions. Compared with HCs, SZ patients had reduced thalamic connectivity with bilateral cerebellum and anterior cingulate cortex. In contrast, SZ patients had greater thalamic connectivity with multiple sensory-motor regions, including bilateral pre- and post-central gyrus, middle/inferior occipital gyrus, and middle/superior temporal gyrus. Thalamus to middle temporal gyrus connectivity was positively correlated with hallucinations and delusions, while thalamus to cerebellar connectivity was negatively correlated with delusions and bizarre behavior.ConclusionsThalamic hyperconnectivity with sensory regions and hypoconnectivity with cerebellar regions in combination with their relationship to clinical features of SZ suggest that thalamic dysconnectivity may be a core neurobiological feature of SZ that underpins positive symptoms.


2021 ◽  
Vol 13 ◽  
Author(s):  
Jung Yun Jang ◽  
S. Duke Han ◽  
Belinda Yew ◽  
Anna E. Blanken ◽  
Shubir Dutt ◽  
...  

Apathy predicts poor outcomes in older adults, and its underlying neural mechanism needs further investigation. We examined the association between symptoms of apathy and functional connectivity (FC) in older adults without stroke or dementia. Participants included 48 individuals (mean age = 70.90) living independently in the community, who underwent resting-state fMRI and completed the Apathy Evaluation Scale (AES). Seed-to-voxel analysis (cluster-level p-FDR &lt;0.05, voxel threshold p &lt; 0.001) tested the association between AES scores and the whole-brain FC of brain regions involved in reward- and salience-related processing. We found that AES scores were negatively associated with FC of the right insula cortex and right anterior temporal regions (124 voxels, t = −5.10) and FC of the left orbitofrontal cortex and anterior cingulate regions (160 voxels, t = −5.45), and were positively associated with FC of the left orbitofrontal cortex and left lateral prefrontal (282 voxels, t = 4.99) and anterior prefrontal (123 voxels, t = 4.52) regions. These findings suggest that apathy in older adults may reflect disruptions in neural connectivity involved in reward- and salience-related processing.


Sign in / Sign up

Export Citation Format

Share Document