Site Index Curves for Eastern Cottonwood Plantations in the Lower Mississippi Delta

1991 ◽  
Vol 15 (1) ◽  
pp. 28-30 ◽  
Author(s):  
Quang V. Cao ◽  
Kenneth M. Durand

Abstract A site index equation was developed based on stem-analysis data collected from 30 sites of an eastern cottonwood (Populus deltoides Bartr.) plantation in the lower Mississippi Delta. The Bailey and Clutter (1974) equation form was selected for stand height prediction. Polymorphic site index curves (base age 10 years) were presented based on this equation. These curves should be applicable to cottonwood plantations up to 11 years old in and near the Mississippi River Delta. South. J. Appl. For. 15(1):28-30.

1991 ◽  
Vol 15 (4) ◽  
pp. 213-216 ◽  
Author(s):  
Quang V. Cao ◽  
Kenneth M. Durand

Abstract A compatible growth and yield model was developed based on remeasurement data collected from 183 plots on unthinned improved eastern cottonwood (Populus deltoides Bartr.) plantations in the lower Mississippi Delta. The Sullivan and Clutter (1972) equation form was selected for predicting cubic-foot volume yield and projecting volume from site index and initial age and basal area. Yield equations explained 97% and 94%, respectively, of the variations in total outside bark and merchantable inside bark volumes. Mean annual increment of merchantable volume culminated between 8 and 15 years, depending on site index and initial basal area. South. J. Appl. For. 15(4):213-216.


1978 ◽  
Vol 54 (1) ◽  
pp. 39-41 ◽  
Author(s):  
Bijan Payandeh

Site index formulas were derived for peatland black spruce (Picea mariana [Mill.] B.S.P.) in northern Ontario based on stem analysis of 60 dominant and codominant trees. Nonlinear regression analysis and a biological growth function were employed to express both height as a function of site index and stand age and also site index as a function of stand height and age. Analysis of results indicates that peatland black spruce has a different pattern of height growth than that shown by Plonski's site index curves, particularly for site indices less than 8 m and stands older than 80 years.


1991 ◽  
Vol 15 (2) ◽  
pp. 97-100
Author(s):  
W. David Hacker ◽  
M. Victor Bilan

Abstract Stem analysis data collected from dominant and codominant trees growing in loblolly (Pinus taeda L.) and slash pine (Pinus elliottii Engelm.) plantations were used to develop site index curves. These data were collected from loblolly and slash pine plantations growing in the Post Oak Belt of East Texas. The height prediction curves were based on the Chapman-Richards function and will provide an indication of site productivity based an plantation age. South. J. Appl. For. 15(2):97-100.


2006 ◽  
Vol 82 (6) ◽  
pp. 819-824 ◽  
Author(s):  
Zhili Feng ◽  
Kenneth J Stadt ◽  
Victor J Lieffers ◽  
Shongming Huang

The goal of this study was to link the growth of juvenile white spruce stands with an estimate of their site index. We applied a previously developed technique for correcting the height bias created by dominance switching among juvenile trees before trees reached the site index base age (50 years at breast height), using stem analysis data of white spruce from five mixedwood stands in central Alberta. For white spruce of approximately 15 years total age, we found the height of the current top height trees was approximately 14% greater than the height of the top height trees that would be selected close to breast height age 50. This height correction is essential to avoid an overestimate of site index. Secondly, to avoid the difficulties of determining breast height age or growth increment required for juvenile site index determination, we developed a linkage to site index using data from 168 white spruce trees that were longitudinally sectioned along the pith, selected from juvenile (age 6–15) spruce stands. Using this new equation, coupled with the correction for bias, we found that site index for white spruce from 49 test stands in Alberta, ranged from 9.0 to 31.8 m at base age 50, with a mean of 17.8 m; these values are in the range for spruce in mixedwood stands in Alberta. Key words: juvenile stand, height age curve, height bias adjustment, site index


1997 ◽  
Vol 21 (3) ◽  
pp. 134-138 ◽  
Author(s):  
Quang V. Cao ◽  
V. Clark Baldwin ◽  
Richard E. Lohrey

Abstract Site index equations were developed for direct-seeded loblolly pine (Pinus taeda L.) and longleaf pine (Pinus palustris Mill.) based on data from 148 and 75 permanent plots, respectively. These plots varied from 0.053 to 0.119 ac in size, and were established in broadcast, row, and spot seeded stands throughout Louisiana. The Bailey and Clutter (1974) model was selected for stand height prediction. Site index curves are presented for both species based on these equations. These site index models should provide satisfactory short-term height projection for direct-seeded loblolly and longleaf pine stands in Louisiana. South. J. Appl. For. 21(3):134-138.


1987 ◽  
Vol 65 (5) ◽  
pp. 949-953 ◽  
Author(s):  
James S. Coleman ◽  
Clive G. Jones ◽  
William H. Smith

The interaction of an acute ozone dose, plant genotype, and leaf ontogeny on the development of cottonwood leaf rust on eastern cottonwood (Populus deltoides Bartr.) was investigated. A rust-resistant (ST 66) and a rust-susceptible (ST 109) clone were exposed to charcoal-filtered air or were fumigated with 393 μg m−3 (0.20 ppm) ozone for 5 h. Forty hours after fumigation, leaf material of different developmental ages was inoculated with urediospores of Melampsora medusae Thum., and uredia production was measured after 10 days. Ozone fumigation of cottonwoods significantly reduced uredia production by M. medusae on both clones and all leaf ages without causing visible leaf injury or measurable changes in cottonwood height growth, leaf production, leaf length, or root/shoot biomass. Uredia production was strongly affected by ozone treatment, cottonwood genotype, and leaf age, but interactions among these three factors did not occur.


2013 ◽  
Vol 79 (18) ◽  
pp. 5745-5752 ◽  
Author(s):  
Amy L. Schaefer ◽  
Colin R. Lappala ◽  
Ryan P. Morlen ◽  
Dale A. Pelletier ◽  
Tse-Yuan S. Lu ◽  
...  

ABSTRACTWe are interested in the root microbiome of the fast-growing Eastern cottonwood tree,Populus deltoides. There is a large bank of bacterial isolates fromP. deltoides, and there are 44 draft genomes of bacterial endophyte and rhizosphere isolates. As a first step in efforts to understand the roles of bacterial communication and plant-bacterial signaling inP. deltoides, we focused on the prevalence of acyl-homoserine lactone (AHL) quorum-sensing-signal production and reception in members of theP. deltoidesmicrobiome. We screened 129 bacterial isolates for AHL production using a broad-spectrum bioassay that responds to many but not all AHLs, and we queried the available genome sequences of microbiome isolates for homologs of AHL synthase and receptor genes. AHL signal production was detected in 40% of 129 strains tested. Positive isolates included members of theAlpha-,Beta-, andGammaproteobacteria. Members of theluxIfamily of AHL synthases were identified in 18 of 39 proteobacterial genomes, including genomes of some isolates that tested negative in the bioassay. Members of theluxRfamily of transcription factors, which includes AHL-responsive factors, were more abundant thanluxIhomologs. There were 72 in the 39 proteobacterial genomes. Some of theluxRhomologs appear to be members of a subfamily of LuxRs that respond to as-yet-unknown plant signals rather than bacterial AHLs. Apparently, there is a substantial capacity for AHL cell-to-cell communication in proteobacteria of theP. deltoidesmicrobiota, and there are alsoProteobacteriawith LuxR homologs of the type hypothesized to respond to plant signals or cues.


Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 186
Author(s):  
Carson Roberts ◽  
Drew M. Gholson ◽  
Nicolas Quintana-Ashwell ◽  
Gurpreet Kaur ◽  
Gurbir Singh ◽  
...  

The Mississippi River Valley Alluvial Aquifer (MRVAA) is being depleted, and practices that improve water stewardship have been developed to reduce drawdown. This study assesses how Mississippi Delta producers changed their perceptions of these practices over time. The analysis employs data from two surveys carried-out in 2012 and 2014 of all Mississippi permittees who held an agricultural well permit drawing from the MRVAA. Focusing on water-saving practices, this study found that producer perception of the usability of flowmeters improved over time. About 80% and 90% more producers growing corn and soybeans, respectively, felt that computerized hole selection was highly efficient. In 2014, 38% of corn and 35% of soybean producers believed that shortened furrow length was a highly efficient practice—up from 21% in corn and 24% in soybean producers in 2012. Approval of irrigation automation, moisture probes, and other irrigation technology rose from 75%of producers in 2012 to 88% by 2014. Favorability toward water-saving practices increased overall between the survey years.


Sign in / Sign up

Export Citation Format

Share Document