A Growth and Yield Model for Improved Eastern Cottonwood Plantations in the Lower Mississippi Delta

1991 ◽  
Vol 15 (4) ◽  
pp. 213-216 ◽  
Author(s):  
Quang V. Cao ◽  
Kenneth M. Durand

Abstract A compatible growth and yield model was developed based on remeasurement data collected from 183 plots on unthinned improved eastern cottonwood (Populus deltoides Bartr.) plantations in the lower Mississippi Delta. The Sullivan and Clutter (1972) equation form was selected for predicting cubic-foot volume yield and projecting volume from site index and initial age and basal area. Yield equations explained 97% and 94%, respectively, of the variations in total outside bark and merchantable inside bark volumes. Mean annual increment of merchantable volume culminated between 8 and 15 years, depending on site index and initial basal area. South. J. Appl. For. 15(4):213-216.

1984 ◽  
Vol 14 (2) ◽  
pp. 295-295
Author(s):  
Robert L. Bailey ◽  
Kenneth D. Ware

not available


2006 ◽  
Vol 36 (8) ◽  
pp. 1959-1967 ◽  
Author(s):  
Joshua P Adams ◽  
Thomas G Matney ◽  
Samuel B Land Jr. ◽  
Keith L Belli ◽  
Howard W Duzan Jr.

Differences in survival, diameter, height (site index), and stem profile among eight North Carolina half-sib families and one Mississippi–Alabama commercial check of loblolly pine (Pinus taeda L.) at three spacings over 17 years were evaluated for effects on a growth-and-yield model. Actual stand volume at age 17 was determined from a 100% measurement of all trees. This volume was compared with predicted volumes from age nine measurements using (i) the unmodified model and (ii) the model after modifications for family differences. Modifications to the model included family-specific site indices for height differences and family-specific regression functions for each of the other traits. The unmodified model resulted in an underestimate of actual stand volume by 31%. Adjustments for family differences in dominant height (site index), survival, or profile had little effect on this bias. Insertion of family-specific regressions for stem profile and site index in combination with survival-diameter density effects greatly reduced the bias and provided the best estimates of future stand volumes.


2019 ◽  
Author(s):  
Kevin B Hall ◽  
Jl Stape ◽  
Bronson P Bullock ◽  
Doug Frederick ◽  
Jeff Wright ◽  
...  

Abstract In recent Eucalyptus cold-tolerance trials, E. benthamii has shown good growth rates as well as cold tolerance for USDA Plant Hardiness Zones 8 and 9. This study developed growth and yield models for E. benthamii in the southeastern United States. A network of 182 temporary sample plots of E. benthamii ranging in age from 1.5 to 13.3 years was established, and inventory data were collected. Site quality was determined by fitting a polymorphic site index curve, whereas a function for stand basal area based on age, dominant height, and site occupancy was fitted. Stand-level volume and dry-weight biomass prediction equations were fitted as a function of dominant height and basal area. Based on the growth and yield model results, mean annual increments ranged from 26.4 m3 ha–1 year–1 at rotation age 6 years on the best sites to 13.7 m3 ha–1 year–1 at rotation age 10 years on the poorest sites. This is the first published set of management-oriented models for land managers considering planting E. benthamii in the southeastern United States.


1996 ◽  
Vol 13 (4) ◽  
pp. 164-170 ◽  
Author(s):  
Donald A. Perala ◽  
George E. Host ◽  
James K. Jordan ◽  
Christopher J. Cieszewski

Abstract A simulation model is described that grows stands of aspen of given age, site quality, and stocking from establishment to breakup. Specifying mean July air temperature allows custom application to most aspen growing regions in North America and Scandinavia. The program predicts total yields in number of trees, basal area, and biomass; and merchantable yields in cubic feet and cords for user-specified utilization standards, and in board feet, Scribner. North. J. Appl. For. 13(4):164-170.


2020 ◽  
Vol 50 ◽  
Author(s):  
Serajis Salekin ◽  
Euan G. Mason ◽  
Justin Morgenroth ◽  
Dean F. Meason

Background: New Zealand’s plantation forest industry is dominated by the exotic species radiata pine (Pinus radiata D.Don), which comprises approximately 90% of the net stocked area. However, there is interest in introducing new species to: (a) provide wood that is naturally decay-resistant as a substitute for wood treated with preservatives; (b) match species to the wide variety of environmental conditions in New Zealand; and (c) reduce reliance on P. radiata. Some Eucalyptus species are considered as potential alternatives to P. radiata, specifically those that can survive in resource-limited conditions and produce high quality wood. While Eucalyptus species are grown in plantations in many regions of the world, limited information is available on their growth in New Zealand. Eucalyptus globoidea Blakley is of particular interest and has been planted in trials throughout New Zealand. A complete set of preliminary growth and yield models for this species will satisfy the initial information requirements for diversifying New Zealand’s plantation forest industry. Methods: A set of growth and yield models was developed and validated, based on data from 29 E. globoidea permanent sample plots (PSPs) located mostly in North Island and a few in South Island of New Zealand. Trees were measured at different time intervals in these plots, with height and diameter at breast height (DBH) ranging from 0.1–39.8 m and 0.1–62.3 cm, respectively. An algebraic difference approach (ADA) was applied to model mean top height, basal area, maximum diameter, and standard deviation of DBH. Non-linear regression equations were used to project stand volume and height-diameter relationship, and Reineke’s stand density index (SDI) approach was employed to model mortality. Results: Mean top height, maximum diameter, and standard deviation of DBH were best fitted by Von Bertalanffy-Richards (SE=1.1 m), Hossfeld (SE=2.4 cm), and Schumacher polymorphic (SE=1.6 cm) difference equations, respectively. Basal area data were modelled with high precision (SE=6.9 m2 ha-1) by the Schumacher anamorphic difference equation. Reineke’s SDI approach was able to explain the self-thinning as a reduction in the number of stems per hectare. Stand-level volume per hectare and height-diameter relationship models were precise when including site-specific variables with standard errors of 40.5 m3 ha-1 and 3.1 m, respectively. Conclusion: This study presents a set of preliminary growth and yield models for E. globoidea to project plot-level growth attributes. The models were path invariant and satisfied basic traditional mensurational-statistical growth and yield model assumptions. These models will provide forest growers and managers with important fundamental information about the growth and yield of E. globoidea.


1991 ◽  
Vol 15 (1) ◽  
pp. 28-30 ◽  
Author(s):  
Quang V. Cao ◽  
Kenneth M. Durand

Abstract A site index equation was developed based on stem-analysis data collected from 30 sites of an eastern cottonwood (Populus deltoides Bartr.) plantation in the lower Mississippi Delta. The Bailey and Clutter (1974) equation form was selected for stand height prediction. Polymorphic site index curves (base age 10 years) were presented based on this equation. These curves should be applicable to cottonwood plantations up to 11 years old in and near the Mississippi River Delta. South. J. Appl. For. 15(1):28-30.


Forests ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 810
Author(s):  
Sebastian Palmas ◽  
Paulo C. Moreno ◽  
Wendel P. Cropper ◽  
Alicia Ortega ◽  
Salvador A. Gezan

Reliable information on stand dynamics and development is needed to improve management decisions on mixed forests, and essential tools for this purpose are forest growth and yield (G&Y) models. In this study, stand-level G&Y models were built for cohorts within the natural mixed second-growth Nothofagus-dominated forests in Chile. All currently available (but limited) data, consisting of a series of stratified temporary and permanent plots established in the complete range of this forest type, were used to fit and validate these models. Linear and nonlinear models were considered, where dominant stand age, number of trees, and the proportion of basal area of Nothofagus species resulted in significant predictors to project future values of stand basal area for the different cohorts (with R2 > 0.51 for the validation datasets). Mortality was successfully modeled (R2 = 0.79), based on a small set of permanent plots, using the concept of self-thinning with a proposed model defined by the idea that, as stands get closer to a maximum density, they experience higher levels of mortality. The evaluation of these models indicated that they adequately represent the current understanding of dynamics of basal area and mortality of Nothofagus and companion species in these forests. These are the first models fitted over a large geographical area that consider the dynamics of these mixed forests. It is suggested that the proposed models should constitute the main components of future implementations of G&Y model systems.


2019 ◽  
Vol 49 (11) ◽  
pp. 1471-1482
Author(s):  
Woongsoon Jang ◽  
Bianca N.I. Eskelson ◽  
Louise de Montigny ◽  
Catherine A. Bealle Statland ◽  
Derek F. Sattler ◽  
...  

This study was conducted to quantify growth responses of three major commercial conifer species (lodgepole pine (Pinus contorta Douglas ex Loudon var. latifolia Engelm. ex S. Watson), interior Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco var. glauca (Beissn.) Franco), and spruce (white spruce (Picea glauca (Moench) Voss) and hybrid spruce (Picea engelmannii Parry ex. Engelm. × Picea glauca (Moench) Voss × Picea sitchensis (Bong.) Carrière))) to various fertilizer blends in interior British Columbia, Canada. Over 25 years, growth-response data were repeatedly collected across 46 installations. The fertilizer blends were classified into three groups: nitrogen only; nitrogen and sulfur combined; and nitrogen, sulfur, and boron combined. The growth responses for stand volume, basal area, and top height were calculated through absolute and relative growth rate ratios relative to a controlled group. Fertilizer blend, inverse years since fertilization, site index, stand density at fertilization, and their interactions with the fertilizer blend were used as explanatory variables. The magnitude and significance of volume and basal area growth responses to fertilization differed by species, fertilizer-blend groups, and stand-condition variables (i.e., site index and stand density). In contrast, the response in top height growth did not differ among fertilization blends, with the exception of the nitrogen and sulfur fertilizer subgroup for lodgepole pine. The models developed in this study will be incorporated into the current growth and yield fertilization module (i.e., Table Interpolation Program for Stand Yields (TIPSY)), thereby supporting guidance of fertilization applications in interior forests in British Columbia.


2007 ◽  
Vol 22 (4) ◽  
pp. 269-277
Author(s):  
D. Pascual ◽  
D.A. Maguire ◽  
F. Bravo

Abstract Evaluations of response to variable silvicultural treatments play a key role in developing sustainable forest management. To evaluate silvicultural response, a growth and yield model is needed. A comparison between similar species could act as a logical first step toward building a growth and yield model and to test the efficiency of the calibration of an existing ponderosa pine (Pinus ponderosa Dougl. ex Laws.) growth model to a Mediterranean maritime pine (Pinus pinaster Ait. ssp. mesogeensis) growth model. This study aimed at (1) comparing the diameter growth pattern between ponderosa and Mediterranean maritime pine, and (2) assessing the potential of ORGANON for simulating Mediterranean maritime pine growth and yield. The first objective was addressed by fitting a diameter growth equation for Mediterranean maritime pine and comparing it with patterns in ponderosa pine growth represented by the corresponding equation in ORGANON. The second objective was addressed by growing Mediterranean maritime pine as ponderosa pine in ORGANON, conditional on observed diameter growth rates of Mediterranean maritime pine in Spain. The results emphasized the unsuitability of ORGANON for predicting diameter growth of Mediterranean maritime pine in Spain. Mediterranean maritime pine diameter growth depended on basal area in trees with a diameter larger than the subject tree, (BAL) which, in our context is a subrogate of competition from above.


Sign in / Sign up

Export Citation Format

Share Document