scholarly journals Growth of Longleaf and Loblolly Pine Planted on South Carolina Sandhill Sites

2010 ◽  
Vol 34 (2) ◽  
pp. 79-83 ◽  
Author(s):  
Michelle M. Cram ◽  
Kenneth W. Outcalt ◽  
Stanley J. Zarnoch

Abstract Performance of longleaf (Pinus palustris Mill.) and loblolly pine (P. taeda L.) were compared 15–19 years after outplanting on 10 different sites in the sandhills of South Carolina. The study was established from 1988 to 1992 with bareroot seedlings artificially inoculated with Pisolithus tinctorius (Pt) or naturally inoculated with mycorrhizae in the nursery. A containerized longleaf pine treatment with and without Pt inoculation was added to two sites in 1992. Effects of the Pt nursery treatment were mixed, with a decrease in survival of bareroot longleaf pine on two sites and an increase in survival on another site. The containerized longleaf pine treatment substantially increased survival, which led to greater volume compared with bareroot longleaf pine. Loblolly pine yielded more volume than longleaf pine on all sites but one, where survival was negatively affected by fire. Depth of sandy surface horizon affected mean annual height growth of both loblolly and longleaf pine. Height growth per year decreased with an increase in sand depth for both species. Multiple regression analysis of volume growth (ft3/ac per year) for both species indicated a strong relationship to depth of sandy soil and survival. After 15–19 years, loblolly pine has been more productive than longleaf pine, although longleaf pine productivity may be equal to or greater than that of loblolly pine on the soils with the deepest sandy surface layers over longer rotations.

1999 ◽  
Vol 23 (1) ◽  
pp. 46-52 ◽  
Author(s):  
Michelle M. Cram ◽  
John G. Mexal ◽  
Ray Souter

Abstract Longleaf (Pinus palustris) and loblolly pine (P. taeda) nursery beds were treated with either vegetative inoculum of Pisolithus tinctorius (Pt) or allowed to become inoculated with natural ectomycorrhizae (NI) from 1987 to 1991. The resulting Pt and NI seedlings were outplanted on 2 sites per year (1988-1992) for a total of 10 demonstration plantings on the Savannah River Site (SRS), South Carolina. After 4 yr (5 yr for Site 5) the presence of Pt on bareroot longleaf pine at the time of planting did not improve seedling diameter or height growth. Longleaf pine survival was increased with the presence of Pt only on one site, while NI seedlings had greater survival on five sites and greater growth on two sites. The presence of Pt on the containerized longleaf pine had no effect on survival or diameter growth after 4 yr. Inoculation of bareroot loblolly pine with Pt resulted in larger diameter seedlings at the time of planting for four of eight sites. However, these differences in diameter were not maintained in three of the sites after 4 yr. The use of Pt as an artificial inoculant of bareroot longleaf and loblolly pine seedlings does not increase survival or growth response of reforestation plantings on the sandhills of South Carolina after 4 (5) yr. South. J. Appl. For. 23(1):46-52.


2020 ◽  
Vol 50 (7) ◽  
pp. 624-635
Author(s):  
Patrick J. Curtin ◽  
Benjamin O. Knapp ◽  
Steven B. Jack ◽  
Lance A. Vickers ◽  
David R. Larsen ◽  
...  

Recent interest in continuous cover forest management of longleaf pine (Pinus palustris Mill.) ecosystems raises questions of long-term sustainability because of uncertainty in rates of canopy recruitment of longleaf pine trees. We destructively sampled 130 naturally regenerated, midstory longleaf pines across an 11 300 ha, second-growth longleaf pine landscape in southwestern Georgia, United States, to reconstruct individual tree height growth patterns. We tested effects of stand density (using a competition index) and site quality (based on two site classifications: mesic and xeric) on height growth and demographics of midstory trees. We also compared height growth of paired midstory and overstory trees to infer stand regeneration and recruitment dynamics. In low-density stands, midstory trees were younger and grew at greater rates than trees within high-density stands. Midstory trees in low-density stands were mostly from a younger regeneration cohort than their paired overstory trees, whereas midstory–overstory pairs in high-density stands were mostly of the same cohort. Our results highlight the importance of releasing midstory longleaf pine trees from local competition for sustained height growth in partial-harvesting management systems. They also demonstrate patterns of long-term persistence in high-density stands, indicating flexibility in the canopy recruitment process of this shade-intolerant tree species.


Forests ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 1070
Author(s):  
Songheng Jin ◽  
Brett Moule ◽  
Dapao Yu ◽  
G. Geoff Wang

Longleaf pine (Pinus palustris Mill.) forest is a well-known fire-dependent ecosystem. The historical dominance of longleaf pine in the southeast United States has been attributed to its adaptation known as the grass stage, which allows longleaf pine seedlings to survive under a frequent surface fire regime. However, factors affecting post-fire survival of grass stage seedlings are not well understood. In this study, we measured live and dead longleaf pine grass stage seedlings to quantify the role of seedling size, root collar position, and sprouting in seedling survival following a wildfire in the sandhills of South Carolina. We found that fire resulted in almost 50% mortality for longleaf pine grass stage seedlings. Fire survival rate increased with seedling size, but a size threshold for fire tolerance was not supported. Fire survival depended on the position of root collar relative to the mineral soil. Seedlings with protected root collars (i.e., buried in or at the level of mineral soil) experienced <21%, while seedlings with exposed root collars (i.e., elevated above mineral soil) suffered >90% post-fire mortality. Ability to resprout contributed to 45.6% of the total fire survival, with the small seedlings (root collar diameter (RCD) < 7.6 mm) almost exclusively depending on resprouting. Our findings had significant implications for fire management in longleaf pine ecosystems, and the current frequency of prescribed fire in sandhills might need to be lengthened to facilitate longleaf pine natural regeneration.


2016 ◽  
Vol 46 (7) ◽  
pp. 902-913 ◽  
Author(s):  
Benjamin O. Knapp ◽  
G. Geoff Wang ◽  
Joan L. Walker ◽  
Huifeng Hu

In the southeastern United States, many forest managers are interested in restoring longleaf pine (Pinus palustris Mill.) to upland sites that currently support loblolly pine (Pinus taeda L.). We quantified the effects of four canopy treatments (uncut Control; MedBA, harvest to 9 m2·ha−1; LowBA, harvest to 5 m2·ha−1; and Clearcut) and three cultural treatments (NT, no treatment; H, herbicide release of longleaf pine seedlings; and H+F, herbicide release plus fertilization) on resource availability and growing conditions in relation to longleaf pine seedling response for 3 years. Harvesting treatments reduced competition from canopy trees but resulted in greater abundance of understory vegetation. Harvesting shifted the interception of light from the canopy to the subcanopy vegetation layer; however, total light availability at the forest floor increased with the intensity of canopy removal. Soil moisture was not affected by harvesting or by the cultural treatments. Foliar nutrient concentrations (N, P, and K) of longleaf pine seedlings generally increased with the intensity of the harvest treatment. Of the plant resources measured, we found that light was most strongly correlated with longleaf pine seedling growth and that incorporating the interception of light by subcanopy vegetation improved the relationship over that of canopy light transmittance alone.


2008 ◽  
Vol 18 (1) ◽  
pp. 13-17 ◽  
Author(s):  
Glenn B. Fain ◽  
Charles H. Gilliam ◽  
Jeff L. Sibley ◽  
Cheryl R. Boyer

The objective of this study was to evaluate the potential for use of container substrates composed of processed whole pine trees (WholeTree). Three species [loblolly pine (Pinus taeda), slash pine (Pinus elliottii), and longleaf pine (Pinus palustris)] of 8- to 10-year-old pine trees were harvested at ground level and the entire tree was chipped with a tree chipper. Chips from each tree species were processed with a hammer mill to pass through a 0.374-inch screen. On 29 June 2005 1-gal containers were filled with substrates, placed into full sun under overhead irrigation, and planted with a single liner (63.4 cm3) of ‘Little Blanche’ annual vinca (Catharanthus roseus). The test was repeated on 27 Aug. 2005 with ‘Raspberry Red Cooler’ annual vinca. Pine bark substrate had about 50% less air space and 32% greater water holding capacity than the other substrates. At 54 days after potting (DAP), shoot dry weights were 15% greater for plants grown in 100% pine bark substrate compared with plants grown in the three WholeTree substrates. However, there were no differences in plant growth indices for any substrate at 54 DAP. Plant tissue macronutrient content was similar among all substrates. Tissue micronutrient content was similar and within sufficiency ranges with the exception of manganese. Manganese was highest for substrates made from slash pine and loblolly pine. Root growth was similar among all treatments. Results from the second study were similar. Based on these results, WholeTree substrates derived from loblolly pine, slash pine, or longleaf pine have potential as an alternative, sustainable source for producing short-term horticultural crops.


The Auk ◽  
2004 ◽  
Vol 121 (1) ◽  
pp. 46-57
Author(s):  
Charles Kwit ◽  
Douglas J. Levey ◽  
Cathryn H. Greenberg ◽  
Scott F. Pearson ◽  
John P. McCarty ◽  
...  

Abstract We conducted winter censuses of two short-distance migrants, Hermit Thrushes (Catharus guttatus) and Yellow-rumped Warblers (Dendroica coronata), over seven years in five different habitats to determine whether their local abundances could be predicted by fruit pulp biomass. Sampled habitats were stands of upland and bottomland hardwood, loblolly pine (Pinus taeda), longleaf pine (P. palustris), and young (<10 years) longleaf pine. Hermit Thrush abundance, which was highest in bottomland hardwood habitats, was positively related to total dry mass of fruit pulp. Those results are consistent with the hypothesis that resource availability affects the local distribution of migrant passerines on their wintering grounds. Our results also indicate that bottomland hardwood habitats in the southeastern United States may be especially important to wintering Hermit Thrushes. Yellow-rumped Warbler abundance was correlated with ripe-fruit pulp dry mass of Myrica cerifera, a major source of winter food for that species. However, because M. cerifera pulp dry mass was confounded with habitat type, we could not distinguish the relative importance of fruit resources and habitat for Yellowrumped Warblers. Our results underscore the importance of fruit to wintering birds. However, the overall percentage of variation in winter bird abundance explained by differences in ripefruit biomass was modest, indicating that other factors are also important.


1988 ◽  
Vol 12 (3) ◽  
pp. 181-185 ◽  
Author(s):  
Harry S. Larsen ◽  
David B. South ◽  
James N. Boyer

Abstract Height growth of outplanted loblolly pine seedlings was monitored over a 3-year period. Growth of seedlings from 20 nurseries was correlated with initial seedling characteristics from paired samples. Height growth during the first 6 months after planting was negatively correlated with the initial seedling height and shoot/root ratio and was positively correlated with root growth potential (RGP) and root weight. However, these variables were not significantly correlated with later growth. Foliar nitrogen content (mg of foliar nitrogen per seedling) was positively correlated with both initial and subsequent field growth. Foliar nitrogen content was the only variable that was significantly correlated with diameter growth and volume growth during the third year after planting. This variable accounted for 36% of the variation among sample means for 3-year height growth. These data support a previous report that field performance of loblolly pine seedlings during the first 3 years in the field can be influenced by the foliar nitrogen content at lifting. South. J. Appl. For. 12(3):181-185.


1981 ◽  
Vol 5 (4) ◽  
pp. 189-195 ◽  
Author(s):  
Albert G. Kais ◽  
Glenn A. Snow ◽  
Donald H. Marx

Abstract Benomyl applied to roots of longleaf pine (Pinus palustris Mill.) seedlings at planting significantly reduced brown-spot disease and increased survival, root collar diameter, and early height growth on two sites in Mississippi. Seedlings with half or more of all ectomycorrhizae formed by Pisolithus tinctorius (Pers.) Coker and Couch in the nursery had significantly better survival and growth; Pisolithus ectomycorrhizae did not appreciably affect brown-spot disease. The benefits of benomyl and Pisolithus ectomycorrhizae were most obvious when combined. More than 75 percent of seedlings treated with benomyl and with more than half of all ectomycorrhizae formed by Pisolithus initiated height growth after 3 years. Forty-seven percent of seedlings with only Thelephora terrestris ectomycorrhizae and without benomyl exhibited height growth. The combined use of benomyl to control brown-spot disease and Pisolithus ectomycorrhizae to stimulate early height growth may overcome the major handicaps that have limited artificial regeneration of longleaf pine in the South.


1993 ◽  
Vol 17 (2) ◽  
pp. 100-102 ◽  
Author(s):  
Kenneth W. Outcalt

Abstract Choctawhatchee sand pine (Pinus clausa var. immuginata D.B. Ward), Ocala sand pine (P. clausa var. clausa D.B. Ward), slash pine (P. elliottii Engelm.), loblolly pine (P. taeda L.), and longleaf pine (P. palustris Mill.) were grown on sandhills in Georgia and South Carolina. Choctawhatcheesand pine grew fastest and yielded the most volume after 28 yr. Productivity equaled that of plantations in northwest Florida, averaging more than 100ft³/ac/yr. To maximize yields for pulpwood rotations of 25 to 35 yr, managers should plant these sites to Choctawhatchee sand pine. Longleafpine, however, has been growing as fast as Choctawhatchee sand pine since age 15 yr. Therefore, especially for longer rotations, it would be an acceptable alternative species. South. J. Appl. For. 17(2):00-00.


2000 ◽  
Vol 24 (2) ◽  
pp. 86-92 ◽  
Author(s):  
James D. Haywood ◽  
Harold E. Grelen

Abstract Prescribed burning treatments were applied over a 20 yr period in a completely randomized field study to determine the effects of various fire regimes on vegetation in a direct seeded stand of longleaf pine (Pinus palustris Mill.). Seeding was done in November 1968. The study area was broadcast-burned about 16 months after seeding. The initial research treatments were applied in 1973, and as many as 12 research burns were applied through 1993. Pines were measured in March 1995. Prescribed burning resulted in a greater stocking of longleaf pine (an average of 598 trees/ac) on treated plots than on unburned plots (30 trees/ac). However, on the burned treatments, longleaf pines were significantly smaller (2.5 ft3/tree of stemwood) than were the unburned trees (3.7ft3/tree of stemwood). Half of the treated plots were burned in early March, and the other half were burned in early May. Seasons of burning did not significantly influence longleaf pine stocking. However, use of fire in May resulted in significantly greater basal area (100 ft2/ac) and stemwood production (1,921 ft3/ac) than burning in March (59 ft2/ac and 909 ft3/ac). Fire effectively kept natural loblolly pine (P. taeda L.) seedlings from reaching sapling size, but loblolly saplings and poles dominated the unburned plots (710 trees/ac). When all pines were considered on all treatments, stocking ranged from 467 to 740 trees/ac, but stocking was not significantly different among treatments. The unburned plots had significantly greater total basal area (149 ft2/ac) and stemwood productivity (2,918 ft3/ac) than the burned treatments (82 ft2/ac and 1,459 ft3 /ac). Likewise, hardwoods that were at least 1 in. dbh were more common on unburned p lots (327 stems/ac) than on burned treatments (58 stems/ac). South. J. Appl. For. 24(2):86-92.


Sign in / Sign up

Export Citation Format

Share Document