scholarly journals A Total-Evidence Dated Phylogeny of Echinoidea Combining Phylogenomic and Paleontological Data

Author(s):  
Nicolás Mongiardino Koch ◽  
Jeffrey R Thompson

Abstract Phylogenomic and paleontological data constitute complementary resources for unraveling the phylogenetic relationships and divergence times of lineages, yet few studies have attempted to fully integrate them. Several unique properties of echinoids (sea urchins) make them especially useful for such synthesizing approaches, including a remarkable fossil record that can be incorporated into explicit phylogenetic hypotheses. We revisit the phylogeny of crown group Echinoidea using a total-evidence dating approach that combines the largest phylogenomic data set for the clade, a large-scale morphological matrix with a dense fossil sampling, and a novel compendium of tip and node age constraints. To this end, we develop a novel method for subsampling phylogenomic data sets that selects loci with high phylogenetic signal, low systematic biases, and enhanced clock-like behavior. Our results demonstrate that combining different data sources increases topological accuracy and helps resolve conflicts between molecular and morphological data. Notably, we present a new hypothesis for the origin of sand dollars, and restructure the relationships between stem and crown echinoids in a way that implies a long stretch of undiscovered evolutionary history of the crown group in the late Paleozoic. Our efforts help bridge the gap between phylogenomics and phylogenetic paleontology, providing a model example of the benefits of combining the two. [Echinoidea; fossils; paleontology; phylogenomics; time calibration; total evidence.]

2020 ◽  
Author(s):  
Nicolás Mongiardino Koch ◽  
Jeffrey R. Thompson

AbstractSeveral unique properties of echinoids (sea urchins) make them useful for exploring macroevolutionary dynamics, including their remarkable fossil record that can be incorporated into explicit phylogenetic hypotheses. However, this potential cannot be exploited without a robust resolution of the echinoid tree of life. We revisit the phylogeny of crown group Echinoidea using both the largest phylogenomic dataset compiled for the clade, as well as a large-scale morphological matrix with a dense fossil sampling. We also gather a new compendium of both tip and node age constraints, allowing us to combine phylogenomic, morphological and stratigraphic data using a total-evidence dating approach. For this, we develop a novel method for subsampling phylogenomic datasets that selects loci with high phylogenetic signal, low systematic biases and enhanced clock-like behavior. Our approach restructure much of the higher-level phylogeny of echinoids, and demonstrates that combining different data sources increases topological accuracy. We are able to resolve multiple alleged conflicts between molecular and morphological datasets, such as the position of Echinothurioida and Echinoneoida, as well as unravelling the relationships between sand dollars and their closest relatives. We then use this topology to trace the evolutionary history of echinoid body size through more than 270 million years, revealing a complex pattern of convergent evolution to stable peaks in macroevolutionary adaptive landscape. Our efforts show how combining phylogenomic and paleontological evidence offers new ways of exploring evolutionary forces operating across deep timescales.


2017 ◽  
Author(s):  
Ross Mounce

In this thesis I attempt to gather together a wide range of cladistic analyses of fossil and extant taxa representing a diverse array of phylogenetic groups. I use this data to quantitatively compare the effect of fossil taxa relative to extant taxa in terms of support for relationships, number of most parsimonious trees (MPTs) and leaf stability. In line with previous studies I find that the effects of fossil taxa are seldom different to extant taxa – although I highlight some interesting exceptions. I also use this data to compare the phylogenetic signal within vertebrate morphological data sets, by choosing to compare cranial data to postcranial data. Comparisons between molecular data and morphological data have been previously well explored, as have signals between different molecular loci. But comparative signal within morphological data sets is much less commonly characterized and certainly not across a wide array of clades. With this analysis I show that there are many studies in which the evidence provided by cranial data appears to be be significantly incongruent with the postcranial data – more than one would expect to see just by the effect of chance and noise alone. I devise and implement a modification to a rarely used measure of homoplasy that will hopefully encourage its wider usage. Previously it had some undesirable bias associated with the distribution of missing data in a dataset, but my modification controls for this. I also take an in-depth and extensive review of the ILD test, noting it is often misused or reported poorly, even in recent studies. Finally, in attempting to collect data and metadata on a large scale, I uncovered inefficiencies in the research publication system that obstruct re-use of data and scientific progress. I highlight the importance of replication and reproducibility – even simple reanalysis of high profile papers can turn up some very different results. Data is highly valuable and thus it must be retained and made available for further re-use to maximize the overall return on research investment.


2000 ◽  
Vol 355 (1398) ◽  
pp. 769-793 ◽  
Author(s):  
Karen Sue Renzaglia ◽  
R. Joel Duff ◽  
Daniel L. Nickrent ◽  
David J. Garbary

As the oldest extant lineages of land plants, bryophytes provide a living laboratory in which to evaluate morphological adaptations associated with early land existence. In this paper we examine reproductive and structural innovations in the gametophyte and sporophyte generations of hornworts, liverworts, mosses and basal pteridophytes. Reproductive features relating to spermatogenesis and the architecture of motile male gametes are overviewed and evaluated from an evolutionary perspective. Phylogenetic analyses of a data set derived from spermatogenesis and one derived from comprehensive morphogenetic data are compared with a molecular analysis of nuclear and mitochondrial small subunit rDNA sequences. Although relatively small because of a reliance on water for sexual reproduction, gametophytes of bryophytes are the most elaborate of those produced by any land plant. Phenotypic variability in gametophytic habit ranges from leafy to thalloid forms with the greatest diversity exhibited by hepatics. Appendages, including leaves, slime papillae and hairs, predominate in liverworts and mosses, while hornwort gametophytes are strictly thalloid with no organized external structures. Internalization of reproductive and vegetative structures within mucilage–filled spaces is an adaptive strategy exhibited by hornworts. The formative stages of gametangial development are similar in the three bryophyte groups, with the exception that in mosses apical growth is intercalated into early organogenesis, a feature echoed in moss sporophyte ontogeny. A monosporangiate, unbranched sporophyte typifies bryophytes, but developmental and structural innovations suggest the three bryophyte groups diverged prior to elaboration of this generation. Sporophyte morphogenesis in hornworts involves non–synchronized sporogenesis and the continued elongation of the single sporangium, features unique among archegoniates. In hepatics, elongation of the sporophyte seta and archegoniophore is rapid and requires instantaneous wall expandability and hydrostatic support. Unicellular, spiralled elaters and capsule dehiscence through the formation of four regular valves are autapomorphies of liverworts. Sporophytic sophistications in the moss clade include conducting tissue, stomata, an assimilative layer and an elaborate peristome for extended spore dispersal. Characters such as stomata and conducting cells that are shared among sporophytes of mosses, hornworts and pteridophytes are interpreted as parallelisms and not homologies. Our phylogenetic analysis of three different data sets is the most comprehensive to date and points to a single phylogenetic solution for the evolution of basal embryophytes. Hornworts are supported as the earliest divergent embryophyte clade with a moss/liverwort clade sister to tracheophytes. Among pteridophytes, lycophytes are monophyletic and an assemblage containing ferns, Equisetum and psilophytes is sister to seed plants. Congruence between morphological and molecular hypotheses indicates that these data sets are tracking the same phylogenetic signal and reinforces our phylogenetic conclusions. It appears that total evidence approaches are valuable in resolving ancient radiations such as those characterizing the evolution of early embryophytes. More information on land plant phylogeny can be found at: http://www.science.siu.edu/landplants/index.html.


1995 ◽  
Vol 73 (S1) ◽  
pp. 667-676 ◽  
Author(s):  
Anders Tehler

Two data sets, one morphological and one molecular, for ascolocular fungi have been analysed separately for taxonomic congruence and in combination for total evidence. Data were analysed with cladistic parsimony, the total support test, and the congruence test. The morphological data set comprised 15 characters and four species, Arthonia radiata, Dendrographa leucophaea, Lecanactis abietina, and Schismatomma pericleum (Arthoniales). The molecular data include the same species and comprised sequence data with 21 informative sites from approximately half of the 18S ribosomal RNA gene. The morphological phylogeny is corroborated by the molecular phylogeny with regard to relationships of Arthonia radiata, Schismatomma pericleum, and Dendrographa leucophaea. But in the molecular phylogeny Lecanactis abietina is placed as a sister species to the former three species. In the phylogeny inferred from morphological data Lecanactis abietina and Dendrographa leucophaea constitute a sister pair with Schismatomma pericleum followed by Arthonia radiata as subsequent sister taxa. The consensus obtained from the taxonomic congruence method was fully collapsed and uninformative. The combined morphological and molecular data in total evidence produced one most parsimonious cladogram. In total evidence Lecanactis abietina is placed as sister species to Schismatomma pericleum and Dendrographa leucophaea all with Arthonia radiata as sister species. The most resolved and phylogenetically informative hypothesis was obtained from cladistic parsimony analysis using total evidence. A review of congruence between morphological and molecular data in determining gross relationships within the Eumycota and Ascomycetes is also given. Key words: Ascomycetes, Arthoniales, phylogeny, cladistics, taxonomic congruence, total evidence, 18SrDNA.


1995 ◽  
Vol 73 (1) ◽  
pp. 96-103 ◽  
Author(s):  
Zhi-Qiang Zhang

Two morphological data sets for eight trombidioid genera (Acari: Parasitengona) were analyzed separately and in combination using cladistic methods. One data set comprised 15 adult morphological characters, whereas the other comprised 29 larval morphological characters. Analyzed separately, the data on adults produced five equally parsimonious trees and the data on larvae produced three equally parsimonious trees. Analyses of both data sets revealed two distinct clades in Trombidiidae: clade A (Podothrombium, Pollicotrombium, Paratrombium, and Trombidium) and clade B (Dinothrombium, Clinotrombium, and Allothrombium). However, the within-clade generic relationships were resolved by data from larvae only in clade A and by data from adults only in clade B. Analysis of the combined data produced a single most parsimonious tree, with both clade A (Podothrombium (Pollicotrombium (Paratrombium, Trombidium))) and clade B (Dinothrombium (Clinotrombium, Allothrombium)) completely resolved. Thus, data on larvae and postlarvae are not only congruent but also complementary in revealing the phylogenetic relationships of these mites. The results support the principle of total evidence and the use of all available data for a single parsimony analysis.


Author(s):  
Lior Shamir

Abstract Several recent observations using large data sets of galaxies showed non-random distribution of the spin directions of spiral galaxies, even when the galaxies are too far from each other to have gravitational interaction. Here, a data set of $\sim8.7\cdot10^3$ spiral galaxies imaged by Hubble Space Telescope (HST) is used to test and profile a possible asymmetry between galaxy spin directions. The asymmetry between galaxies with opposite spin directions is compared to the asymmetry of galaxies from the Sloan Digital Sky Survey. The two data sets contain different galaxies at different redshift ranges, and each data set was annotated using a different annotation method. The results show that both data sets show a similar asymmetry in the COSMOS field, which is covered by both telescopes. Fitting the asymmetry of the galaxies to cosine dependence shows a dipole axis with probabilities of $\sim2.8\sigma$ and $\sim7.38\sigma$ in HST and SDSS, respectively. The most likely dipole axis identified in the HST galaxies is at $(\alpha=78^{\rm o},\delta=47^{\rm o})$ and is well within the $1\sigma$ error range compared to the location of the most likely dipole axis in the SDSS galaxies with $z>0.15$ , identified at $(\alpha=71^{\rm o},\delta=61^{\rm o})$ .


2015 ◽  
Vol 8 (1) ◽  
pp. 421-434 ◽  
Author(s):  
M. P. Jensen ◽  
T. Toto ◽  
D. Troyan ◽  
P. E. Ciesielski ◽  
D. Holdridge ◽  
...  

Abstract. The Midlatitude Continental Convective Clouds Experiment (MC3E) took place during the spring of 2011 centered in north-central Oklahoma, USA. The main goal of this field campaign was to capture the dynamical and microphysical characteristics of precipitating convective systems in the US Central Plains. A major component of the campaign was a six-site radiosonde array designed to capture the large-scale variability of the atmospheric state with the intent of deriving model forcing data sets. Over the course of the 46-day MC3E campaign, a total of 1362 radiosondes were launched from the enhanced sonde network. This manuscript provides details on the instrumentation used as part of the sounding array, the data processing activities including quality checks and humidity bias corrections and an analysis of the impacts of bias correction and algorithm assumptions on the determination of convective levels and indices. It is found that corrections for known radiosonde humidity biases and assumptions regarding the characteristics of the surface convective parcel result in significant differences in the derived values of convective levels and indices in many soundings. In addition, the impact of including the humidity corrections and quality controls on the thermodynamic profiles that are used in the derivation of a large-scale model forcing data set are investigated. The results show a significant impact on the derived large-scale vertical velocity field illustrating the importance of addressing these humidity biases.


2020 ◽  
Vol 223 (2) ◽  
pp. 1378-1397
Author(s):  
Rosemary A Renaut ◽  
Jarom D Hogue ◽  
Saeed Vatankhah ◽  
Shuang Liu

SUMMARY We discuss the focusing inversion of potential field data for the recovery of sparse subsurface structures from surface measurement data on a uniform grid. For the uniform grid, the model sensitivity matrices have a block Toeplitz Toeplitz block structure for each block of columns related to a fixed depth layer of the subsurface. Then, all forward operations with the sensitivity matrix, or its transpose, are performed using the 2-D fast Fourier transform. Simulations are provided to show that the implementation of the focusing inversion algorithm using the fast Fourier transform is efficient, and that the algorithm can be realized on standard desktop computers with sufficient memory for storage of volumes up to size n ≈ 106. The linear systems of equations arising in the focusing inversion algorithm are solved using either Golub–Kahan bidiagonalization or randomized singular value decomposition algorithms. These two algorithms are contrasted for their efficiency when used to solve large-scale problems with respect to the sizes of the projected subspaces adopted for the solutions of the linear systems. The results confirm earlier studies that the randomized algorithms are to be preferred for the inversion of gravity data, and for data sets of size m it is sufficient to use projected spaces of size approximately m/8. For the inversion of magnetic data sets, we show that it is more efficient to use the Golub–Kahan bidiagonalization, and that it is again sufficient to use projected spaces of size approximately m/8. Simulations support the presented conclusions and are verified for the inversion of a magnetic data set obtained over the Wuskwatim Lake region in Manitoba, Canada.


2009 ◽  
Vol 2 (1) ◽  
pp. 87-98 ◽  
Author(s):  
C. Lerot ◽  
M. Van Roozendael ◽  
J. van Geffen ◽  
J. van Gent ◽  
C. Fayt ◽  
...  

Abstract. Total O3 columns have been retrieved from six years of SCIAMACHY nadir UV radiance measurements using SDOAS, an adaptation of the GDOAS algorithm previously developed at BIRA-IASB for the GOME instrument. GDOAS and SDOAS have been implemented by the German Aerospace Center (DLR) in the version 4 of the GOME Data Processor (GDP) and in version 3 of the SCIAMACHY Ground Processor (SGP), respectively. The processors are being run at the DLR processing centre on behalf of the European Space Agency (ESA). We first focus on the description of the SDOAS algorithm with particular attention to the impact of uncertainties on the reference O3 absorption cross-sections. Second, the resulting SCIAMACHY total ozone data set is globally evaluated through large-scale comparisons with results from GOME and OMI as well as with ground-based correlative measurements. The various total ozone data sets are found to agree within 2% on average. However, a negative trend of 0.2–0.4%/year has been identified in the SCIAMACHY O3 columns; this probably originates from instrumental degradation effects that have not yet been fully characterized.


2017 ◽  
Vol 14 (4) ◽  
pp. 172988141770907 ◽  
Author(s):  
Hanbo Wu ◽  
Xin Ma ◽  
Zhimeng Zhang ◽  
Haibo Wang ◽  
Yibin Li

Human daily activity recognition has been a hot spot in the field of computer vision for many decades. Despite best efforts, activity recognition in naturally uncontrolled settings remains a challenging problem. Recently, by being able to perceive depth and visual cues simultaneously, RGB-D cameras greatly boost the performance of activity recognition. However, due to some practical difficulties, the publicly available RGB-D data sets are not sufficiently large for benchmarking when considering the diversity of their activities, subjects, and background. This severely affects the applicability of complicated learning-based recognition approaches. To address the issue, this article provides a large-scale RGB-D activity data set by merging five public RGB-D data sets that differ from each other on many aspects such as length of actions, nationality of subjects, or camera angles. This data set comprises 4528 samples depicting 7 action categories (up to 46 subcategories) performed by 74 subjects. To verify the challengeness of the data set, three feature representation methods are evaluated, which are depth motion maps, spatiotemporal depth cuboid similarity feature, and curvature space scale. Results show that the merged large-scale data set is more realistic and challenging and therefore more suitable for benchmarking.


Sign in / Sign up

Export Citation Format

Share Document