scholarly journals PhyloBayes MPI: Phylogenetic Reconstruction with Infinite Mixtures of Profiles in a Parallel Environment

2013 ◽  
Vol 62 (4) ◽  
pp. 611-615 ◽  
Author(s):  
Nicolas Lartillot ◽  
Nicolas Rodrigue ◽  
Daniel Stubbs ◽  
Jacques Richer
2019 ◽  
pp. 23-36
Author(s):  
Mario. R. Cabrera

Formerly Cnemidophorus was thought to be the most speciose genus of Teiidae. This genus comprised four morphological groups that were later defined as four different genera, Ameivula, Aurivela, Cnemidophorus and Contomastix. The last appears as paraphyletic in a recent phylogenetic reconstruction based on morphology, but monophyletic in a reconstruction using molecular characters. Six species are allocated to Contomastix. One of them, C. lacertoides, having an extensive and disjunct geographic distribution in Argentina, Uruguay and Brazil. Preliminary analyses revealed morphological differences among its populations, suggesting that it is actually a complex of species. Here, we describe a new species corresponding to the Argentinian populations hitherto regarded as C. lacertoides, by integrating morphological and molecular evidence. Furthermore, we demonstrate that the presence of notched proximal margin of the tongue is a character that defines the genus Contomastix.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sarah Hayer ◽  
Dirk Brandis ◽  
Alexander Immel ◽  
Julian Susat ◽  
Montserrat Torres-Oliva ◽  
...  

AbstractThe historical phylogeography of Ostrea edulis was successfully depicted in its native range for the first time using ancient DNA methods on dry shells from museum collections. This research reconstructed the historical population structure of the European flat oyster across Europe in the 1870s—including the now extinct population in the Wadden Sea. In total, four haplogroups were identified with one haplogroup having a patchy distribution from the North Sea to the Atlantic coast of France. This irregular distribution could be the result of translocations. The other three haplogroups are restricted to narrow geographic ranges, which may indicate adaptation to local environmental conditions or geographical barriers to gene flow. The phylogenetic reconstruction of the four haplogroups suggests the signatures of glacial refugia and postglacial expansion. The comparison with present-day O. edulis populations revealed a temporally stable population genetic pattern over the past 150 years despite large-scale translocations. This historical phylogeographic reconstruction was able to discover an autochthonous population in the German and Danish Wadden Sea in the late nineteenth century, where O. edulis is extinct today. The genetic distinctiveness of a now-extinct population hints at a connection between the genetic background of O. edulis in the Wadden Sea and for its absence until today.


Genetics ◽  
1995 ◽  
Vol 139 (1) ◽  
pp. 463-471 ◽  
Author(s):  
D B Goldstein ◽  
A Ruiz Linares ◽  
L L Cavalli-Sforza ◽  
M W Feldman

Abstract Mutations of alleles at microsatellite loci tend to result in alleles with repeat scores similar to those of the alleles from which they were derived. Therefore the difference in repeat score between alleles carries information about the amount of time that has passed since they shared a common ancestral allele. This information is ignored by genetic distances based on the infinite alleles model. Here we develop a genetic distance based on the stepwise mutation model that includes allelic repeat score. We adapt earlier treatments of the stepwise mutation model to show analytically that the expectation of this distance is a linear function of time. We then use computer simulations to evaluate the overall reliability of this distance and to compare it with allele sharing and Nei's distance. We find that no distance is uniformly superior for all purposes, but that for phylogenetic reconstruction of taxa that are sufficiently diverged, our new distance is preferable.


Author(s):  
Yvonne R. Schumm ◽  
Dimitris Bakaloudis ◽  
Christos Barboutis ◽  
Jacopo G. Cecere ◽  
Cyril Eraud ◽  
...  

AbstractDiseases can play a role in species decline. Among them, haemosporidian parasites, vector-transmitted protozoan parasites, are known to constitute a risk for different avian species. However, the magnitude of haemosporidian infection in wild columbiform birds, including strongly decreasing European turtle doves, is largely unknown. We examined the prevalence and diversity of haemosporidian parasites Plasmodium, Leucocytozoon and subgenera Haemoproteus and Parahaemoproteus in six species of the order Columbiformes during breeding season and migration by applying nested PCR, one-step multiplex PCR assay and microscopy. We detected infections in 109 of the 259 screened individuals (42%), including 15 distinct haemosporidian mitochondrial cytochrome b lineages, representing five H. (Haemoproteus), two H. (Parahaemoproteus), five Leucocytozoon and three Plasmodium lineages. Five of these lineages have never been described before. We discriminated between single and mixed infections and determined host species-specific prevalence for each parasite genus. Observed differences among sampled host species are discussed with reference to behavioural characteristics, including nesting and migration strategy. Our results support previous suggestions that migratory birds have a higher prevalence and diversity of blood parasites than resident or short-distance migratory species. A phylogenetic reconstruction provided evidence for H. (Haemoproteus) as well as H. (Parahaemoproteus) infections in columbiform birds. Based on microscopic examination, we quantified parasitemia, indicating the probability of negative effects on the host. This study provides a large-scale baseline description of haemosporidian infections of wild birds belonging to the order Columbiformes sampled in the northern hemisphere. The results enable the monitoring of future changes in parasite transmission areas, distribution and diversity associated with global change, posing a potential risk for declining avian species as the European turtle dove.


Author(s):  
Manish C Choudhary ◽  
Charles R Crain ◽  
Xueting Qiu ◽  
William Hanage ◽  
Jonathan Z Li

Abstract Background Both SARS-CoV-2 reinfection and persistent infection have been reported, but sequence characteristics in these scenarios have not been described. We assessed published cases of SARS-CoV-2 reinfection and persistence, characterizing the hallmarks of reinfecting sequences and the rate of viral evolution in persistent infection. Methods A systematic review of PubMed was conducted to identify cases of SARS-CoV-2 reinfection and persistence with available sequences. Nucleotide and amino acid changes in the reinfecting sequence were compared to both the initial and contemporaneous community variants. Time-measured phylogenetic reconstruction was performed to compare intra-host viral evolution in persistent SARS-CoV-2 to community-driven evolution. Results Twenty reinfection and nine persistent infection cases were identified. Reports of reinfection cases spanned a broad distribution of ages, baseline health status, reinfection severity, and occurred as early as 1.5 months or >8 months after the initial infection. The reinfecting viral sequences had a median of 17.5 nucleotide changes with enrichment in the ORF8 and N genes. The number of changes did not differ by the severity of reinfection and reinfecting variants were similar to the contemporaneous sequences circulating in the community. Patients with persistent COVID-19 demonstrated more rapid accumulation of sequence changes than seen with community-driven evolution with continued evolution during convalescent plasma or monoclonal antibody treatment. Conclusions Reinfecting SARS-CoV-2 viral genomes largely mirror contemporaneous circulating sequences in that geographic region, while persistent COVID-19 has been largely described in immunosuppressed individuals and is associated with accelerated viral evolution.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S731-S731
Author(s):  
Laura J Rojas ◽  
Mohamad Yasmin ◽  
Jacquelynn Benjamino ◽  
Steven Marshall ◽  
Kailynn DeRonde ◽  
...  

Abstract Background Pseudomonas aeruginosa is a persistent and difficult-to-treat pathogen in many patients, especially those with cystic fibrosis (CF). Herein, we describe our experience managing a young woman suffering from CF with XDR P. aeruginosa who underwent lung transplantation. We highlight the contemporary difficulties reconciling the clinical, microbiological, and genetic information. Methods Mechanism-based-susceptibility disk diffusion synergy testing with double and triple antibiotic combinations aided in choosing tailored antimicrobial combinations to control the infection in the pre-transplant period, create an effective perioperative prophylaxis regimen, and manage recurrent infections in the post-transplant period. Thirty-six sequential XDR and PDR P. aeruginosa isolates obtained from the patient within a 17-month period, before and after a double-lung transplant were analyzed by whole genome sequencing (WGS) and RNAseq in order to understand the genetic basis of the observed resistance phenotypes, establish the genomic population diversity, and define the nature of sequence changes over time Results Our phylogenetic reconstruction demonstrates that these isolates represent a genotypically and phenotypically heterogeneous population. The pattern of mutation accumulation and variation of gene expression suggests that a group of closely related strains was present in the patient prior to transplantation and continued to evolve throughout the course of treatment regardless of antibiotic usage.Our findings challenge antimicrobial stewardship programs that assist with the selection and duration of antibiotic regimens in critically ill and immunocompromised patients based on single-isolate laboratory-derived resistant profiles. We propose that an approach sampling the population of pathogens present in a clinical sample instead of single colonies be applied instead when dealing with XDR P. aeruginosa, especially in patients with CF. Conclusion In complex cases such as this, real-time combination testing and genomic/transcriptomic data could lead to the application of true “precision medicine” by helping clinicians choose the combination antimicrobial therapy most likely to be successful against a population of MDR pathogens present. Disclosures Federico Perez, MD, MS, Accelerate (Research Grant or Support)Merck (Research Grant or Support)Pfizer (Research Grant or Support) Robert A. Bonomo, MD, Entasis, Merck, Venatorx (Research Grant or Support)


Insects ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 518
Author(s):  
Bronwyn Egan ◽  
Zwannda Nethavhani ◽  
Barbara van Asch

Macrotermes termites play important ecological roles and are consumed by many communities as a delicacy and dietary complement throughout Africa. However, lack of reliable morphological characters has hampered studies of Macrotermes diversity in a wide range of scientific fields including ecology, phylogenetics and food science. In order to place our preliminary assessment of the diversity of Macrotermes in South Africa in context, we analysed a comprehensive dataset of COI sequences for African species including new and publicly available data. Phylogenetic reconstruction and estimates of genetic divergence showed a high level of incongruity between species names and genetic groups, as well as several instances of cryptic diversity. We identified three main clades and 17 genetic groups in the dataset. We propose that this structure be used as a background for future surveys of Macrotermes diversity in Africa, thus mitigating the negative impact of the present taxonomic uncertainties in the genus. The new specimens collected in Limpopo fell into four distinct genetic groups, suggesting that the region harbours remarkable Macrotermes diversity relative to other African regions surveyed in previous studies. This work shows that African Macrotermes have been understudied across the continent, and that the genus contains cryptic diversity undetectable by classic taxonomy. Furthermore, these results may inform future taxonomic revisions in Macrotermes, thus contributing to advances in termitology.


Sign in / Sign up

Export Citation Format

Share Document