Probabilistic Species Tree Distances: Implementing the Multispecies Coalescent to Compare Species Trees Within the Same Model-Based Framework Used to Estimate Them

2019 ◽  
Vol 69 (1) ◽  
pp. 194-207
Author(s):  
Richard H Adams ◽  
Todd A Castoe

Abstract Despite the ubiquitous use of statistical models for phylogenomic and population genomic inferences, this model-based rigor is rarely applied to post hoc comparison of trees. In a recent study, Garba et al. derived new methods for measuring the distance between two gene trees computed as the difference in their site pattern probability distributions. Unlike traditional metrics that compare trees solely in terms of geometry, these measures consider gene trees and associated parameters as probabilistic models that can be compared using standard information theoretic approaches. Consequently, probabilistic measures of phylogenetic tree distance can be far more informative than simply comparisons of topology and/or branch lengths alone. However, in their current form, these distance measures are not suitable for the comparison of species tree models in the presence of gene tree heterogeneity. Here, we demonstrate an approach for how the theory of Garba et al. (2018), which is based on gene tree distances, can be extended naturally to the comparison of species tree models. Multispecies coalescent (MSC) models parameterize the discrete probability distribution of gene trees conditioned upon a species tree with a particular topology and set of divergence times (in coalescent units), and thus provide a framework for measuring distances between species tree models in terms of their corresponding gene tree topology probabilities. We describe the computation of probabilistic species tree distances in the context of standard MSC models, which assume complete genetic isolation postspeciation, as well as recent theoretical extensions to the MSC in the form of network-based MSC models that relax this assumption and permit hybridization among taxa. We demonstrate these metrics using simulations and empirical species tree estimates and discuss both the benefits and limitations of these approaches. We make our species tree distance approach available as an R package called pSTDistanceR, for open use by the community.

2019 ◽  
Vol 37 (5) ◽  
pp. 1480-1494 ◽  
Author(s):  
Anastasiia Kim ◽  
Noah A Rosenberg ◽  
James H Degnan

Abstract A labeled gene tree topology that is more probable than the labeled gene tree topology matching a species tree is called “anomalous.” Species trees that can generate such anomalous gene trees are said to be in the “anomaly zone.” Here, probabilities of “unranked” and “ranked” gene tree topologies under the multispecies coalescent are considered. A ranked tree depicts not only the topological relationship among gene lineages, as an unranked tree does, but also the sequence in which the lineages coalesce. In this article, we study how the parameters of a species tree simulated under a constant-rate birth–death process can affect the probability that the species tree lies in the anomaly zone. We find that with more than five taxa, it is possible for species trees to have both anomalous unranked and ranked gene trees. The probability of being in either type of anomaly zone increases with more taxa. The probability of anomalous gene trees also increases with higher speciation rates. We observe that the probabilities of unranked anomaly zones are higher and grow much faster than those of ranked anomaly zones as the speciation rate increases. Our simulation shows that the most probable ranked gene tree is likely to have the same unranked topology as the species tree. We design the software PRANC, which computes probabilities of ranked gene tree topologies given a species tree under the coalescent model.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251107
Author(s):  
Ayed A. R. Alanzi ◽  
James H. Degnan

Species trees, which describe the evolutionary relationships between species, are often inferred from gene trees, which describe the ancestral relationships between sequences sampled at different loci from the species of interest. A common approach to inferring species trees from gene trees is motivated by supposing that gene tree variation is due to incomplete lineage sorting, also known as deep coalescence. One of the earliest methods motivated by deep coalescence is to find the species tree that minimizes the number of deep coalescent events needed to explain discrepancies between the species tree and input gene trees. This minimize deep coalescence (MDC) criterion can be applied in both rooted and unrooted settings. where either rooted or unrooted gene trees can be used to infer a rooted species tree. Previous work has shown that MDC is statistically inconsistent in the rooted setting, meaning that under a probabilistic model for deep coalescence, the multispecies coalescent, for some species trees, increasing the number of input gene trees does not make the method more likely to return a correct species tree. Here, we obtain analogous results in the unrooted setting, showing conditions leading to inconsistency of the MDC criterion using the multispecies coalescent model with unrooted gene trees for four taxa and five taxa.


2022 ◽  
Author(s):  
XiaoXu Pang ◽  
Da-Yong Zhang

The species studied in any evolutionary investigation generally constitute a very small proportion of all the species currently existing or that have gone extinct. It is therefore likely that introgression, which is widespread across the tree of life, involves "ghosts," i.e., unsampled, unknown, or extinct lineages. However, the impact of ghost introgression on estimations of species trees has been rarely studied and is thus poorly understood. In this study, we use mathematical analysis and simulations to examine the robustness of species tree methods based on a multispecies coalescent model under gene flow sourcing from an extant or ghost lineage. We found that very low levels of extant or ghost introgression can result in anomalous gene trees (AGTs) on three-taxon rooted trees if accompanied by strong incomplete lineage sorting (ILS). In contrast, even massive introgression, with more than half of the recipient genome descending from the donor lineage, may not necessarily lead to AGTs. In cases involving an ingroup lineage (defined as one that diverged no earlier than the most basal species under investigation) acting as the donor of introgression, the time of root divergence among the investigated species was either underestimated or remained unaffected, but for the cases of outgroup ghost lineages acting as donors, the divergence time was generally overestimated. Under many conditions of ingroup introgression, the stronger the ILS was, the higher was the accuracy of estimating the time of root divergence, although the topology of the species tree is more prone to be biased by the effect of introgression.


2022 ◽  
Vol 12 ◽  
Author(s):  
Martha Kandziora ◽  
Petr Sklenář ◽  
Filip Kolář ◽  
Roswitha Schmickl

A major challenge in phylogenetics and -genomics is to resolve young rapidly radiating groups. The fast succession of species increases the probability of incomplete lineage sorting (ILS), and different topologies of the gene trees are expected, leading to gene tree discordance, i.e., not all gene trees represent the species tree. Phylogenetic discordance is common in phylogenomic datasets, and apart from ILS, additional sources include hybridization, whole-genome duplication, and methodological artifacts. Despite a high degree of gene tree discordance, species trees are often well supported and the sources of discordance are not further addressed in phylogenomic studies, which can eventually lead to incorrect phylogenetic hypotheses, especially in rapidly radiating groups. We chose the high-Andean Asteraceae genus Loricaria to shed light on the potential sources of phylogenetic discordance and generated a phylogenetic hypothesis. By accounting for paralogy during gene tree inference, we generated a species tree based on hundreds of nuclear loci, using Hyb-Seq, and a plastome phylogeny obtained from off-target reads during target enrichment. We observed a high degree of gene tree discordance, which we found implausible at first sight, because the genus did not show evidence of hybridization in previous studies. We used various phylogenomic analyses (trees and networks) as well as the D-statistics to test for ILS and hybridization, which we developed into a workflow on how to tackle phylogenetic discordance in recent radiations. We found strong evidence for ILS and hybridization within the genus Loricaria. Low genetic differentiation was evident between species located in different Andean cordilleras, which could be indicative of substantial introgression between populations, promoted during Pleistocene glaciations, when alpine habitats shifted creating opportunities for secondary contact and hybridization.


2020 ◽  
Author(s):  
Matthew H Van Dam ◽  
James B Henderson ◽  
Lauren Esposito ◽  
Michelle Trautwein

Abstract Ultraconserved genomic elements (UCEs) are generally treated as independent loci in phylogenetic analyses. The identification pipeline for UCE probes does not require prior knowledge of genetic identity, only selecting loci that are highly conserved, single copy, without repeats, and of a particular length. Here, we characterized UCEs from 11 phylogenomic studies across the animal tree of life, from birds to marine invertebrates. We found that within vertebrate lineages, UCEs are mostly intronic and intergenic, while in invertebrates, the majority are in exons. We then curated four different sets of UCE markers by genomic category from five different studies including: birds, mammals, fish, Hymenoptera (ants, wasps, and bees), and Coleoptera (beetles). Of genes captured by UCEs, we find that many are represented by two or more UCEs, corresponding to nonoverlapping segments of a single gene. We considered these UCEs to be nonindependent, merged all UCEs that belonged to a particular gene, constructed gene and species trees, and then evaluated the subsequent effect of merging cogenic UCEs on gene and species tree reconstruction. Average bootstrap support for merged UCE gene trees was significantly improved across all data sets apparently driven by the increase in loci length. Additionally, we conducted simulations and found that gene trees generated from merged UCEs were more accurate than those generated by unmerged UCEs. As loci length improves gene tree accuracy, this modest degree of UCE characterization and curation impacts downstream analyses and demonstrates the advantages of incorporating basic genomic characterizations into phylogenomic analyses. [Anchored hybrid enrichment; ants; ASTRAL; bait capture; carangimorph; Coleoptera; conserved nonexonic elements; exon capture; gene tree; Hymenoptera; mammal; phylogenomic markers; songbird; species tree; ultraconserved elements; weevils.]


2020 ◽  
Author(s):  
Michael J. Sanderson ◽  
Michelle M. McMahon ◽  
Mike Steel

AbstractTerraces in phylogenetic tree space are sets of trees with identical optimality scores for a given data set, arising from missing data. These were first described for multilocus phylogenetic data sets in the context of maximum parsimony inference and maximum likelihood inference under certain model assumptions. Here we show how the mathematical properties that lead to terraces extend to gene tree - species tree problems in which the gene trees are incomplete. Inference of species trees from either sets of gene family trees subject to duplication and loss, or allele trees subject to incomplete lineage sorting, can exhibit terraces in their solution space. First, we show conditions that lead to a new kind of terrace, which stems from subtree operations that appear in reconciliation problems for incomplete trees. Then we characterize when terraces of both types can occur when the optimality criterion for tree search is based on duplication, loss or deep coalescence scores. Finally, we examine the impact of assumptions about the causes of losses: whether they are due to imperfect sampling or true evolutionary deletion.


2020 ◽  
Author(s):  
Ishrat Tanzila Farah ◽  
Md Muktadirul Islam ◽  
Kazi Tasnim Zinat ◽  
Atif Hasan Rahman ◽  
Md Shamsuzzoha Bayzid

AbstractSpecies tree estimation from multi-locus dataset is extremely challenging, especially in the presence of gene tree heterogeneity across the genome due to incomplete lineage sorting (ILS). Summary methods have been developed which estimate gene trees and then combine the gene trees to estimate a species tree by optimizing various optimization scores. In this study, we have formalized the concept of “phylogenomic terraces” in the species tree space, where multiple species trees with distinct topologies may have exactly the same optimization score (quartet score, extra lineage score, etc.) with respect to a collection of gene trees. We investigated the presence and implication of terraces in species tree estimation from multi-locus data by taking ILS into account. We analyzed two of the most popular ILS-aware optimization criteria: maximize quartet consistency (MQC) and minimize deep coalescence (MDC). Methods based on MQC are provably statistically consistent, whereas MDC is not a consistent criterion for species tree estimation. Our experiments, on a collection of dataset simulated under ILS, indicate that MDC-based methods may achieve competitive or identical quartet consistency score as MQC but could be significantly worse than MQC in terms of tree accuracy – demonstrating the presence and affect of phylogenomic terraces. This is the first known study that formalizes the concept of phylogenomic terraces in the context of species tree estimation from multi-locus data, and reports the presence and implications of terraces in species tree estimation under ILS.


2020 ◽  
Author(s):  
Patrick F. McKenzie ◽  
Deren A. R. Eaton

AbstractA key distinction between species tree inference under the multi-species coalescent model (MSC), and the inference of gene trees in sliding windows along a genome, is in the effect of genetic linkage. Whereas the MSC explicitly assumes genealogies to be unlinked, i.e., statistically independent, genealogies located close together on genomes are spatially auto-correlated. Here we use tree sequence simulations with recombination to explore the effects of species tree parameters on spatial patterns of linkage among genealogies. We decompose coalescent time units to demonstrate differential effects of generation time and effective population size on spatial coalescent patterns, and we define a new metric, “phylogenetic linkage,” for measuring the rate of decay of phylogenetic similarity by comparison to distances among unlinked genealogies. Finally, we provide a simple example where accounting for phylogenetic linkage in sliding window analyses improves local gene tree inference.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Guilherme Rezende Dias ◽  
Eduardo Guimarães Dupim ◽  
Thyago Vanderlinde ◽  
Beatriz Mello ◽  
Antonio Bernardo Carvalho

Abstract Background The Drosophilidae family is traditionally divided into two subfamilies: Drosophilinae and Steganinae. This division is based on morphological characters, and the two subfamilies have been treated as monophyletic in most of the literature, but some molecular phylogenies have suggested Steganinae to be paraphyletic. To test the paraphyletic-Steganinae hypothesis, here, we used genomic sequences of eight Drosophilidae (three Steganinae and five Drosophilinae) and two Ephydridae (outgroup) species and inferred the phylogeny for the group based on a dataset of 1,028 orthologous genes present in all species (> 1,000,000 bp). This dataset includes three genera that broke the monophyly of the subfamilies in previous works. To investigate possible biases introduced by small sample sizes and automatic gene annotation, we used the same methods to infer species trees from a set of 10 manually annotated genes that are commonly used in phylogenetics. Results Most of the 1,028 gene trees depicted Steganinae as paraphyletic with distinct topologies, but the most common topology depicted it as monophyletic (43.7% of the gene trees). Despite the high levels of gene tree heterogeneity observed, species tree inference in ASTRAL, in PhyloNet, and with the concatenation approach strongly supported the monophyly of both subfamilies for the 1,028-gene dataset. However, when using the concatenation approach to infer a species tree from the smaller set of 10 genes, we recovered Steganinae as a paraphyletic group. The pattern of gene tree heterogeneity was asymmetrical and thus could not be explained solely by incomplete lineage sorting (ILS). Conclusions Steganinae was clearly a monophyletic group in the dataset that we analyzed. In addition to ILS, gene tree discordance was possibly the result of introgression, suggesting complex branching processes during the early evolution of Drosophilidae with short speciation intervals and gene flow. Our study highlights the importance of genomic data in elucidating contentious phylogenetic relationships and suggests that phylogenetic inference for drosophilids based on small molecular datasets should be performed cautiously. Finally, we suggest an approach for the correction and cleaning of BUSCO-derived genomic datasets that will be useful to other researchers planning to use this tool for phylogenomic studies.


2020 ◽  
Vol 36 (18) ◽  
pp. 4819-4821
Author(s):  
Anastasiia Kim ◽  
James H Degnan

Abstract Summary PRANC computes the Probabilities of RANked gene tree topologies under the multispecies coalescent. A ranked gene tree is a gene tree accounting for the temporal ordering of internal nodes. PRANC can also estimate the maximum likelihood (ML) species tree from a sample of ranked or unranked gene tree topologies. It estimates the ML tree with estimated branch lengths in coalescent units. Availability and implementation PRANC is written in C++ and freely available at github.com/anastasiiakim/PRANC. Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document