scholarly journals 19 Dubious Ways to Compute the Marginal Likelihood of a Phylogenetic Tree Topology

2019 ◽  
Vol 69 (2) ◽  
pp. 209-220 ◽  
Author(s):  
Mathieu Fourment ◽  
Andrew F Magee ◽  
Chris Whidden ◽  
Arman Bilge ◽  
Frederick A Matsen ◽  
...  

Abstract The marginal likelihood of a model is a key quantity for assessing the evidence provided by the data in support of a model. The marginal likelihood is the normalizing constant for the posterior density, obtained by integrating the product of the likelihood and the prior with respect to model parameters. Thus, the computational burden of computing the marginal likelihood scales with the dimension of the parameter space. In phylogenetics, where we work with tree topologies that are high-dimensional models, standard approaches to computing marginal likelihoods are very slow. Here, we study methods to quickly compute the marginal likelihood of a single fixed tree topology. We benchmark the speed and accuracy of 19 different methods to compute the marginal likelihood of phylogenetic topologies on a suite of real data sets under the JC69 model. These methods include several new ones that we develop explicitly to solve this problem, as well as existing algorithms that we apply to phylogenetic models for the first time. Altogether, our results show that the accuracy of these methods varies widely, and that accuracy does not necessarily correlate with computational burden. Our newly developed methods are orders of magnitude faster than standard approaches, and in some cases, their accuracy rivals the best established estimators.

Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1850
Author(s):  
Rashad A. R. Bantan ◽  
Farrukh Jamal ◽  
Christophe Chesneau ◽  
Mohammed Elgarhy

Unit distributions are commonly used in probability and statistics to describe useful quantities with values between 0 and 1, such as proportions, probabilities, and percentages. Some unit distributions are defined in a natural analytical manner, and the others are derived through the transformation of an existing distribution defined in a greater domain. In this article, we introduce the unit gamma/Gompertz distribution, founded on the inverse-exponential scheme and the gamma/Gompertz distribution. The gamma/Gompertz distribution is known to be a very flexible three-parameter lifetime distribution, and we aim to transpose this flexibility to the unit interval. First, we check this aspect with the analytical behavior of the primary functions. It is shown that the probability density function can be increasing, decreasing, “increasing-decreasing” and “decreasing-increasing”, with pliant asymmetric properties. On the other hand, the hazard rate function has monotonically increasing, decreasing, or constant shapes. We complete the theoretical part with some propositions on stochastic ordering, moments, quantiles, and the reliability coefficient. Practically, to estimate the model parameters from unit data, the maximum likelihood method is used. We present some simulation results to evaluate this method. Two applications using real data sets, one on trade shares and the other on flood levels, demonstrate the importance of the new model when compared to other unit models.


2020 ◽  
Vol 9 (1) ◽  
pp. 61-81
Author(s):  
Lazhar BENKHELIFA

A new lifetime model, with four positive parameters, called the Weibull Birnbaum-Saunders distribution is proposed. The proposed model extends the Birnbaum-Saunders distribution and provides great flexibility in modeling data in practice. Some mathematical properties of the new distribution are obtained including expansions for the cumulative and density functions, moments, generating function, mean deviations, order statistics and reliability. Estimation of the model parameters is carried out by the maximum likelihood estimation method. A simulation study is presented to show the performance of the maximum likelihood estimates of the model parameters. The flexibility of the new model is examined by applying it to two real data sets.


Author(s):  
Mohamed E. Mead ◽  
Gauss M. Cordeiro ◽  
Ahmed Z. Afify ◽  
Hazem Al Mofleh

Mahdavi A. and Kundu D. (2017) introduced a family for generating univariate distributions called the alpha power transformation. They studied as a special case the properties of the alpha power transformed exponential distribution. We provide some mathematical properties of this distribution and define a four-parameter lifetime model called the alpha power exponentiated Weibull distribution. It generalizes some well-known lifetime models such as the exponentiated exponential, exponentiated Rayleigh, exponentiated Weibull and Weibull distributions. The importance of the new distribution comes from its ability to model monotone and non-monotone failure rate functions, which are quite common in reliability studies. We derive some basic properties of the proposed distribution including quantile and generating functions, moments and order statistics. The maximum likelihood method is used to estimate the model parameters. Simulation results investigate the performance of the estimates. We illustrate the importance of the proposed distribution over the McDonald Weibull, beta Weibull, modified Weibull, transmuted Weibull and exponentiated Weibull distributions by means of two real data sets.


Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 440 ◽  
Author(s):  
Abdulhakim A. Al-babtain ◽  
I. Elbatal ◽  
Haitham M. Yousof

In this article, we introduced a new extension of the binomial-exponential 2 distribution. We discussed some of its structural mathematical properties. A simple type Copula-based construction is also presented to construct the bivariate- and multivariate-type distributions. We estimated the model parameters via the maximum likelihood method. Finally, we illustrated the importance of the new model by the study of two real data applications to show the flexibility and potentiality of the new model in modeling skewed and symmetric data sets.


Stats ◽  
2018 ◽  
Vol 1 (1) ◽  
pp. 77-91
Author(s):  
Broderick Oluyede ◽  
Boikanyo Makubate ◽  
Adeniyi Fagbamigbe ◽  
Precious Mdlongwa

A new compound distribution called Burr XII-Weibull-Logarithmic (BWL) distribution is introduced and its properties are explored. This new distribution contains several new and well known sub-models, including Burr XII-Exponential-Logarithmic, Burr XII-Rayleigh-Logarithmic, Burr XII-Logarithmic, Lomax-Exponential-Logarithmic, Lomax–Rayleigh-Logarithmic, Weibull, Rayleigh, Lomax, Lomax-Logarithmic, Weibull-Logarithmic, Rayleigh-Logarithmic, and Exponential-Logarithmic distributions. Some statistical properties of the proposed distribution including moments and conditional moments are presented. Maximum likelihood estimation technique is used to estimate the model parameters. Finally, applications of the model to real data sets are presented to illustrate the usefulness of the proposed distribution.


Author(s):  
Bassa Shiwaye Yakura ◽  
Ahmed Askira Sule ◽  
Mustapha Mohammed Dewu ◽  
Kabiru Ahmed Manju ◽  
Fadimatu Bawuro Mohammed

This article uses the odd Lomax-G family of distributions to study a new extension of the Kumaraswamy distribution called “odd Lomax-Kumaraswamy distribution”. In this article, the density and distribution functions of the odd Lomax-Kumaraswamy distribution are defined and studied with many other properties of the distribution such as the ordinary moments, moment generating function, characteristic function, quantile function, reliability functions, order statistics and other useful measures. The model parameters are estimated by the method of maximum likelihood. The goodness-of-fit of the proposed distribution is demonstrated using two real data sets.


Author(s):  
Ibrahim Elbatal ◽  
A. Aldukeel

In this article, we introduce a new distribution called the McDonald Erlangtruncated exponential distribution. Various structural properties including explicit expressions for the moments, moment generating function, mean deviation of the new distribution are derived. The estimation of the model parameters is performed by maximum likelihood method. The usefulness of the new distribution is illustrated by two real data sets. The new model is much better than other important competitive models in modeling relief times and survival times data sets.


Author(s):  
Salman Abbas ◽  
Gamze Ozal ◽  
Saman Hanif Shahbaz ◽  
Muhammad Qaiser Shahbaz

In this article, we present a new generalization of weighted Weibull distribution using Topp Leone family of distributions. We have studied some statistical properties of the proposed distribution including quantile function, moment generating function, probability generating function, raw moments, incomplete moments, probability, weighted moments, Rayeni and q th entropy. The have obtained numerical values of the various measures to see the eect of model parameters. Distribution of of order statistics for the proposed model has also been obtained. The estimation of the model parameters has been done by using maximum likelihood method. The eectiveness of proposed model is analyzed by means of a real data sets. Finally, some concluding remarks are given.


2019 ◽  
Vol 17 (2) ◽  
Author(s):  
M. Tanwir Akhtar ◽  
Athar Ali Khan

Reliability data are generated in the form of success/failure. An attempt was made to model such type of data using binomial distribution in the Bayesian paradigm. For fitting the Bayesian model both analytic and simulation techniques are used. Laplace approximation was implemented for approximating posterior densities of the model parameters. Parallel simulation tools were implemented with an extensive use of R and JAGS. R and JAGS code are developed and provided. Real data sets are used for the purpose of illustration.


2017 ◽  
Vol 46 (1) ◽  
pp. 41-63 ◽  
Author(s):  
M.E. Mead ◽  
Ahmed Z. Afify ◽  
G.G. Hamedani ◽  
Indranil Ghosh

We define and study a new generalization of the Fréchet distribution called the beta exponential Fréchet distribution. The new model includes thirty two special models. Some of its mathematical properties, including explicit expressions for the ordinary and incomplete moments, quantile and generating functions, mean residual life, mean inactivity time, order statistics and entropies are derived. The method of maximum likelihood is proposed to estimate the model parameters. A small simulation study is alsoreported. Two real data sets are applied to illustrate the flexibility of the proposed model compared with some nested and non-nested models.


Sign in / Sign up

Export Citation Format

Share Document