scholarly journals Distinct Neural Networks Relate to Common and Speaker-Specific Language Priors

2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Leon O H Kroczek ◽  
Thomas C Gunter

Abstract Effective natural communication requires listeners to incorporate not only very general linguistic principles which evolved during a lifetime but also other information like the specific individual language use of a particular interlocutor. Traditionally, research has focused on the general linguistic rules, and brain science has shown a left hemispheric fronto-temporal brain network related to this processing. The present fMRI research explores speaker-specific individual language use because it is unknown whether this processing is supported by similar or distinct neural structures. Twenty-eight participants listened to sentences of persons who used more easy or difficult language. This was done by manipulating the proportion of easy SOV vs. complex OSV sentences for each speaker. Furthermore, ambiguous probe sentences were included to test top-down influences of speaker information in the absence of syntactic structure information. We observed distinct neural processing for syntactic complexity and speaker-specific language use. Syntactic complexity correlated with left frontal and posterior temporal regions. Speaker-specific processing correlated with bilateral (right-dominant) fronto-parietal brain regions. Finally, the top-down influence of speaker information was found in frontal and striatal brain regions, suggesting a mechanism for controlled syntactic processing. These findings show distinct neural networks related to general language principles as well as speaker-specific individual language use.

1996 ◽  
Vol 5 (4) ◽  
pp. 17-30 ◽  
Author(s):  
Diane Frome Loeb ◽  
Clifton Pye ◽  
Sean Redmond ◽  
Lori Zobel Richardson

The focus of assessment and intervention is often aimed at increasing the lexical skills of young children with language impairment. Frequently, the use of nouns is the center of the lexical assessment. As a result, the production of verbs is not fully evaluated or integrated into treatment in a way that accounts for their semantic and syntactic complexity. This paper presents a probe for eliciting verbs from children, describes its effectiveness, and discusses the utility of and problems associated with developing such a probe.


2008 ◽  
Vol 17 (3) ◽  
pp. 87-92
Author(s):  
Leonard L. LaPointe

Abstract Loss of implicit linguistic competence assumes a loss of linguistic rules, necessary linguistic computations, or representations. In aphasia, the inherent neurological damage is frequently assumed by some to be a loss of implicit linguistic competence that has damaged or wiped out neural centers or pathways that are necessary for maintenance of the language rules and representations needed to communicate. Not everyone agrees with this view of language use in aphasia. The measurement of implicit language competence, although apparently necessary and satisfying for theoretic linguistics, is complexly interwoven with performance factors. Transience, stimulability, and variability in aphasia language use provide evidence for an access deficit model that supports performance loss. Advances in understanding linguistic competence and performance may be informed by careful study of bilingual language acquisition and loss, the language of savants, the language of feral children, and advances in neuroimaging. Social models of aphasia treatment, coupled with an access deficit view of aphasia, can salve our restless minds and allow pursuit of maximum interactive communication goals even without a comfortable explanation of implicit linguistic competence in aphasia.


2014 ◽  
Vol 112 (6) ◽  
pp. 1307-1316 ◽  
Author(s):  
Isabel Dombrowe ◽  
Claus C. Hilgetag

The voluntary, top-down allocation of visual spatial attention has been linked to changes in the alpha-band of the electroencephalogram (EEG) signal measured over occipital and parietal lobes. In the present study, we investigated how occipitoparietal alpha-band activity changes when people allocate their attentional resources in a graded fashion across the visual field. We asked participants to either completely shift their attention into one hemifield, to balance their attention equally across the entire visual field, or to attribute more attention to one-half of the visual field than to the other. As expected, we found that alpha-band amplitudes decreased stronger contralaterally than ipsilaterally to the attended side when attention was shifted completely. Alpha-band amplitudes decreased bilaterally when attention was balanced equally across the visual field. However, when participants allocated more attentional resources to one-half of the visual field, this was not reflected in the alpha-band amplitudes, which just decreased bilaterally. We found that the performance of the participants was more strongly reflected in the coherence between frontal and occipitoparietal brain regions. We conclude that low alpha-band amplitudes seem to be necessary for stimulus detection. Furthermore, complete shifts of attention are directly reflected in the lateralization of alpha-band amplitudes. In the present study, a gradual allocation of visual attention across the visual field was only indirectly reflected in the alpha-band activity over occipital and parietal cortexes.


Author(s):  
Jochem van Kempen ◽  
Marc A. Gieselmann ◽  
Michael Boyd ◽  
Nicholas A. Steinmetz ◽  
Tirin Moore ◽  
...  

AbstractSpontaneous fluctuations in cortical excitability influence sensory processing and behavior. These fluctuations, long known to reflect global changes in cortical state, were recently found to be modulated locally within a retinotopic map during spatially selective attention. We found that periods of vigorous (On) and faint (Off) spiking activity, the signature of cortical state fluctuations, were coordinated across brain areas along the visual hierarchy and tightly coupled to their retinotopic alignment. During top-down attention, this interareal coordination was enhanced and progressed along the reverse cortical hierarchy. The extent of local state coordination between areas was predictive of behavioral performance. Our results show that cortical state dynamics are shared across brain regions, modulated by cognitive demands and relevant for behavior.One Sentence SummaryInterareal coordination of local cortical state is retinotopically precise and progresses in a reverse hierarchical manner during selective attention.


Author(s):  
Boris A. Kleber ◽  
Jean Mary Zarate

To produce vocalizations including speech and song, the control of all muscles along the vocal tract (e.g. for respiration, vocal fold motion, resonance changes, and articulation) requires the concerted effort of a vast network of brain regions. However, singers are usually unaware of the neural networks that govern and coordinate all of these muscle groups, or what happens in these networks when auditory or somatosensory feedback notifies the singer of vocal errors, or if feedback is compromised even temporarily. In this chapter, the authors attempt to define the basic neural networks involved in singing, discuss how these networks may change due to extensive vocal training and practice, and present recent findings that illustrate how the networks respond to alterations to auditory and kinesthetic feedback.


2018 ◽  
Vol 89 ◽  
pp. 40-50 ◽  
Author(s):  
Elham Askari ◽  
Seyed Kamaledin Setarehdan ◽  
Ali Sheikhani ◽  
Mohammad Reza Mohammadi ◽  
Mohammad Teshnehlab

2019 ◽  
Vol 30 (3) ◽  
pp. 875-887
Author(s):  
Kai Hwang ◽  
James M Shine ◽  
Dillan Cellier ◽  
Mark D’Esposito

Abstract Past studies have demonstrated that flexible interactions between brain regions support a wide range of goal-directed behaviors. However, the neural mechanisms that underlie adaptive communication between brain regions are not well understood. In this study, we combined theta-burst transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging to investigate the sources of top-down biasing signals that influence task-evoked functional connectivity. Subjects viewed sequences of images of faces and buildings and were required to detect repetitions (2-back vs. 1-back) of the attended stimuli category (faces or buildings). We found that functional connectivity between ventral temporal cortex and the primary visual cortex (VC) increased during processing of task-relevant stimuli, especially during higher memory loads. Furthermore, the strength of functional connectivity was greater for correct trials. Increases in task-evoked functional connectivity strength were correlated with increases in activity in multiple frontal, parietal, and subcortical (caudate and thalamus) regions. Finally, we found that TMS to superior intraparietal sulcus (IPS), but not to primary somatosensory cortex, decreased task-specific modulation in connectivity patterns between the primary VC and the parahippocampal place area. These findings demonstrate that the human IPS is a source of top-down biasing signals that modulate task-evoked functional connectivity among task-relevant cortical regions.


Sign in / Sign up

Export Citation Format

Share Document