scholarly journals Expression Profiling of Heat Stress Effects on Mice Fed Ergot Alkaloids

2006 ◽  
Vol 95 (1) ◽  
pp. 89-97 ◽  
Author(s):  
Sachin Bhusari ◽  
Zhilin Liu ◽  
Leonard B. Hearne ◽  
Donald E. Spiers ◽  
William R. Lamberson ◽  
...  
1998 ◽  
Author(s):  
Matthew J. Reardon ◽  
E. B. Fraser ◽  
Lawrence Katz ◽  
Patricia LeDuc ◽  
Pooria Morovati
Keyword(s):  

2019 ◽  
Vol 7 (3) ◽  
pp. 123-131 ◽  
Author(s):  
Mohamed Abdelhameed Salah Abdelhameed ◽  
◽  
Lozovskiy Alexander Robertovich ◽  
Ali Amany Muhammad Ahmed ◽  
◽  
...  

2020 ◽  
Author(s):  
S MukeshSankar ◽  
C. Tara Satyavathi ◽  
Sharmistha Barthakur ◽  
S.P Singh ◽  
Roshan Kumar ◽  
...  

AbstractEnvironmental stresses negatively influence survival, biomass and grain yield of most crops. Towards functionally clarifying the role of heat responsive genes in Pearl millet under high temperature stress, the present study were carried out using semi quantitative RT- PCR for transcript expression profiling of hsf and hsps in 8 different inbred lines at seedling stage, which was earlier identified as thermo tolerant/susceptible lines through initial screening for thermo tolerance using membrane stability index among 38 elite genotypes. Transcript expression pattern suggested existence of differential response among different genotypes in response to heat stress in the form of accumulation of heat shock responsive gene transcripts. Genotypes WGI 126, TT-1 and MS 841B responded positively towards high temperature stress for transcript accumulation for both Pgcp 70 and Pghsf and also had better growth under heat stress, whereas PPMI 69 showed the least responsiveness to transcript induction supporting the membrane stability index data for scoring thermotolerance, suggesting the efficacy of transcript expression profiling as a molecular based screening technique for identification of thermotolerant genes and genotypes at particular crop growth stages. As to demonstrate this, a full length cDNA of Pghsp 16.97 was cloned from the thermotolerant cultivar, WGI 126 and characterized for thermotolerance. The results of demonstration set forth the transcript profiling for heat tolerant genes can be a very useful technique for high throughput screening of tolerant genotypes at molecular level from large cultivar collections at seedling stage.


2019 ◽  
Vol 71 (2) ◽  
pp. 543-554 ◽  
Author(s):  
Mostafa Abdelrahman ◽  
David J Burritt ◽  
Aarti Gupta ◽  
Hisashi Tsujimoto ◽  
Lam-Son Phan Tran

Abstract Crops such as wheat (Triticum spp.) are predicted to face more frequent exposures to heat stress as a result of climate change. Increasing the yield and sustainability of yield under such stressful conditions has long been a major target of wheat breeding, and this goal is becoming increasingly urgent as the global population increases. Exposure of wheat plants in their reproductive or grain-filling stage to high temperature affects the duration and rate of grain filling, and hence has a negative impact on wheat productivity. Therefore, understanding the plasticity of the response to heat stress that exists between wheat genotypes, especially in source–sink relationships at the reproductive and grain-filling stages, is critical for the selection of germplasm that can maintain high yields under heat stress. A broad understanding of metabolic dynamics and the relationships between metabolism and heat tolerance is required in order to achieve this goal. Here, we review the current literature concerning the effects of heat stress on sink–source relationships in a wide range of wheat genotypes, and highlight the current metabolomic approaches that are used to investigate high temperature responses in wheat.


2011 ◽  
Vol 44 (1) ◽  
pp. 115-125 ◽  
Author(s):  
Masaki Iguchi ◽  
Richard K. Shields

2015 ◽  
Vol 52 (6) ◽  
pp. 1047-1056 ◽  
Author(s):  
Yasuharu Oishi ◽  
Roland R. Roy ◽  
Tomonori Ogata ◽  
Yoshinobu Ohira

2003 ◽  
Vol 278 (32) ◽  
pp. 30328-30338 ◽  
Author(s):  
L. Ashley Cowart ◽  
Yasuo Okamoto ◽  
Francisco R. Pinto ◽  
Jason L. Gandy ◽  
Jonas S. Almeida ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document