scholarly journals Effects of nutrition and soil water availability on water use in a Norway spruce stand

2001 ◽  
Vol 21 (12-13) ◽  
pp. 851-860 ◽  
Author(s):  
N. Phillips ◽  
J. Bergh ◽  
R. Oren ◽  
S. Linder
Ecohydrology ◽  
2011 ◽  
Vol 6 (1) ◽  
pp. 51-63 ◽  
Author(s):  
Zhen-Ming Ge ◽  
Seppo Kellomäki ◽  
Xiao Zhou ◽  
Kai-Yun Wang ◽  
Heli Peltola ◽  
...  

2019 ◽  
Vol 16 (13) ◽  
pp. 2557-2572 ◽  
Author(s):  
Sven Boese ◽  
Martin Jung ◽  
Nuno Carvalhais ◽  
Adriaan J. Teuling ◽  
Markus Reichstein

Abstract. Water-use efficiency (WUE), defined as the ratio of carbon assimilation over evapotranspiration (ET), is a key metric to assess ecosystem functioning in response to environmental conditions. It remains unclear which factors control this ratio during periods of extended water limitation. Here, we used dry-down events occurring at eddy-covariance flux tower sites in the FLUXNET database as natural experiments to assess if and how decreasing soil-water availability modifies WUE at ecosystem scale. WUE models were evaluated by their performance to predict ET from both the gross primary productivity (GPP), which characterizes carbon assimilation at ecosystem scale, and environmental variables. We first compared two water-use efficiency models: the first was based on the concept of a constant underlying water-use efficiency, and the second augmented the first with a previously detected direct influence of radiation on transpiration. Both models predicting ET strictly from atmospheric covariates failed to reproduce observed ET dynamics for these periods, as they did not explicitly account for the effect of soil-water limitation. We demonstrate that an ET-attenuating soil-water-availability factor in junction with the additional radiation term was necessary to accurately predict ET flux magnitudes and dry-down lengths of these water-limited periods. In an analysis of the attenuation of ET for the 31 included FLUXNET sites, up to 50 % of the observed decline in ET was due to the soil-water-availability effect we identified in this study. We conclude by noting that the rates of ET decline differ significantly between sites with different vegetation and climate types and discuss the dependency of this rate on the variability of seasonal dryness.


HortScience ◽  
1995 ◽  
Vol 30 (3) ◽  
pp. 543-546
Author(s):  
D.M. Glenn ◽  
S.S. Miller

The objectives of this 7-year study were to determine the effect of repeated root pruning and irrigation on peach (Prunus persica L. Batsch) tree growth and soil water use. Root pruning began in the year of planting. Peach trees trained to a freestanding “Y” were root-pruned at flowering for 4 years (1985 to 1988) and subsequently at flowering and monthly through July for 3 years (1989 to 1991). Irrigation was withheld or applied the full season or only during stage 3 of fruit growth on root-pruned and non-root-pruned trees. Root pruning limited soil water availability throughout most of the growing season when irrigation was withheld; however, when irrigation was applied, there was no difference in soil water availability. The root length density of peach roots was greatest in the 0 to 30-cm depth, was promoted by irrigation, and was reduced by root pruning in the 0 to 90-cm root zone. Full-season irrigation increased vegetative growth over the nonirrigated treatments. Root pruning had no effect on vegetative growth measured as fresh pruned material. The treatments had no effect on leaf nutrient content, except that root pruning reduced Zn in five consecutive years. Fruit yield was reduced 1 in 5 years by root pruning, and full-season irrigation reduced yield in 3 of 5 years. Repeated root pruning restricted the lateral spread of the root zone and the use of soil resources, yet on the deep soil of this site, restricting the lateral extent of the root zone did not reduce vegetative tree growth.


2018 ◽  
Author(s):  
Sven Boese ◽  
Martin Jung ◽  
Nuno Carvalhais ◽  
Adriaan J. Teuling ◽  
Markus Reichstein

Abstract. Water-use efficiency, defined as the ratio of carbon assimilation over evapotranspiration (ET), is a key metric to assess ecosystem functioning in response to environmental conditions. It remains unclear which factors control this ratio during periods of extended water-limitation, and current semi-empirical water-use efficiency models fail to reproduce observed ET dynamics for these periods. Here, we use dry-down events occurring at eddy-covariance flux tower sites in the FLUXNET database as natural experiments to assess if and how decreasing soil-water availability modifies water-use efficiency on ecosystem scale. We demonstrate that an attenuating soil-water availability factor in junction with a previously discovered additive radiation term is necessary to accurately predict ET flux magnitudes and dry-down lengths of these water-limited periods. In an analysis of the attenuation, 20–33 % of the observed decline in ET was due to the previously unconsidered soil-water availability effect. We conclude by noting the rates of ET decline differ significantly between FLUXNET sites with tall and short vegetation types and discuss the dependency of this rate on the variability of seasonal dryness.


2015 ◽  
Vol 178 ◽  
pp. 8-15 ◽  
Author(s):  
M. Hernández ◽  
L. Echarte ◽  
A. Della Maggiora ◽  
M. Cambareri ◽  
P. Barbieri ◽  
...  

Agronomy ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 862
Author(s):  
Ignacio Tortosa ◽  
Jose M. Escalona ◽  
Guillermo Toro ◽  
Cyril Douthe ◽  
Hipolito Medrano

Climate change threatens worldwide grapevine production, especially in Mediterranean areas. To assume this challenge, the replacement of plant material to choose one more adapted to the new environmental conditions has been proposed as one of the possible solutions. Thus, the study of genetic variability in water-use efficiency (WUE) is needed to guarantee the survival of viticulture in those critical areas. In this study, the variability of WUE in 23 Tempranillo clones growth in pots and submitted to well-watered conditions and moderate water stress was studied along two consecutive years. Leaf net photosynthesis (AN), stomatal conductance (gs), and plant growth parameters were measured, in addition the instrisic WUE (AN/gs), biomass production, and water consumed were calculated. Results show a clear genotype effect for most of the studied parameters, but, with an important year by year variability. We identified different clonal behavior in response to soil water availability, that permits to classify them as water-savers vs water-spenders. In general, there was no found relationship between leaf and plant WUE, even some genotypes as 232 or 1048 were coincident in higher leaf WUE showed highly productive in terms of biomass accumulation per unit of water applied.


Sign in / Sign up

Export Citation Format

Share Document