HbCOI1 perceives jasmonate to trigger signal transduction in Hevea brasiliensis

2020 ◽  
Author(s):  
Juan Chen ◽  
Haitao Yang ◽  
Sui Ma ◽  
Ruifeng Yao ◽  
Xi Huang ◽  
...  

Abstract Natural rubber, a strategically essential raw material used in manufacturing throughout the world, is produced from coagulated and refined latex of rubber tree (Hevea brasiliensis). It is known that phytohormone jasmonate (JA) plays an essential role in regulating latex biosynthesis. However, it is unclear how the JA signal is sensed in a rubber tree. Here, we showed that Hevea brasiliensis CORONATINE-INSENSITIVE 1 (HbCOI1) acts as a receptor that perceives JA to recruit HbJAZ1 for signal transduction. We found that HbCOI1 restores male sterility and JA responses of the coi1–1 mutant in Arabidopsis. The identification of a JA receptor in the rubber tree is essential for elucidating the molecular mechanisms underlying JA-regulated latex biosynthesis. Our results elucidate the mechanism of JA perception in Hevea brasiliensis and also provide an efficient strategy to identify JA receptors in woody plants.

2021 ◽  
Author(s):  
Yujie Fan ◽  
Xiaohu Xiao ◽  
Jianghua Yang ◽  
Jiyan Qi ◽  
Yi Zhang ◽  
...  

Abstract Background: Natural rubber, an important industrial raw material with wide applications, is harvested in the form of latex (cytoplasm of rubber-producing laticifers) from Hevea brasiliensis (para rubber tree) by the way of tapping, i.e. removing a slice of trunk bark by a special knife. In regularly tapped rubber trees, latex regeneration consists of one of the main yield-limiting factors for rubber productivity. Conspicuous stimulation on latex production for the first few tappings makes virgin (untapped before) rubber trees an ideal model to investigate the regulatory mechanisms of latex regeneration. To understand the underlying mechanisms, genome-wide transcript profiling was conducted with a silver-staining cDNA-AFLP technology against the latex samples for the first five tappings.Results: A total of 505 non-redundant differentially expressed (DE) transcript-derived fragments (TDFs) were identified, of which 217 were up-regulated, 180 down-regulated, and 108 bell type-regulated among the five tappings. About 72.5% of these DE-TDFs were functionally annotated, and classified into 11 functional categories, which were discussed with reference to harvesting-stimulated latex regeneration. The importance of sugar metabolism and rubber biosynthesis was highlighted, due to the fact that most of the DE-TDFs annotated in sucrose transport, sugar catabolism, glycolysis, tricarboxylic acid cycle and pentose-phosphate pathway and nine of the ten rubber biosynthesis pathway DE-TDFs were up-regulated by the tapping treatment. More than one tenth of the total DE-TDFs were randomly selected for expression validation by semi-quantitative RT-PCR, and 83.8% showed patterns consistent with their original cDNA-AFLP gel profiles. Moreover, quantitative RT-PCR analysis revealed an 89.7% consistency for the 29 latex-regeneration related DE-TDFs examined.Conclusions: In brief, our results indicate the tapping treatment incurs extensive physiological and molecular changes in the laticifers of virgin rubber trees. The vast numbers of tapping-responsive DE-TDFs identified here provide a basis for unravelling the gene regulatory network for latex regeneration in regularly harvested rubber trees.


1994 ◽  
Vol 67 (3) ◽  
pp. 537-548 ◽  
Author(s):  
Abdul Aziz S. A. Kadir

Abstract This paper will attempt to highlight the various advances made to date in the production and processing of natural rubber (NR). The commercially planted rubber tree, Hevea brasiliensis, can yield as high as 3,000 kg of rubber per hectare in contrast to the 500 kg rubber per hectare obtained from the wild Amazonian rubber trees. The high yield of commercial rubber trees is attributed to the successful breeding program, efficient development of agronomic and crop management practices and proper exploitation systems. Today, the Hevea brasiliensis trees not only contribute to the supply of world natural rubber, but also to the ever increasing demand of tropical timber. Latex extracted from the rubber tree is processed to meet the specific requirements of the consumers. In the area of processing, emphasis is on the production of NR as an industrial raw material with improved quality and consistency. Efforts are also placed on processing efficiency, optimum product mix and production of value added modified NR such as epoxidized and deproteinized NR. The processing activities also take into consideration the control of processing effluent with appropriate effluent treatments or conversion of effluent to useful materials.


2020 ◽  
Author(s):  
Ying Wang ◽  
Hui-Liang Li ◽  
Yong-Kai Zhou ◽  
Dong Guo ◽  
Jia-Hong Zhu ◽  
...  

Abstract Background Somatic embryogenesis (SE) is a promising technology for plant vegetative propagation, which has an important role in tree breeding. Though rubber tree (Hevea brasiliensis Muell. Arg.) SE has been founded, few late SE-related genes had been identified and the molecular regulation mechanisms of late SE still not well understood. Results In this study, the transcriptomes of embryogenic calluses (EC), primary embryo (PE), cotyledonary embryo (CE), abnormal embryo (AE), mature cotyledonary embryo (MCE) and withered abnormal embryo (WAE) were analyzed. A total of 887,852,416 clean reads were generated, more than 85.92% of the clean reads were mapped to the rubber tree genome. The de novo assembly generated 36937 unigenes. The differentially expressed genes (DEGs) were identified in the pairwise comparisons of CE vs. AE and MCE vs. WAE, respectively. The specific common DEGs mainly involved in phytohormones signaling pathway, biosynthesis of phenylpropanoid and starch and sucrose metabolism. Among them, hormone signal transduction related genes were significantly enriched, especially the auxin signaling factors (AUX-like1, GH3.1, SAUR32-like, IAA9-like, IAA14-like, IAA27-like, IAA28-like and ARF5-like). The transcript factors including WRKY40, WRKY70, MYBS3-like, MYB1R1-like, AIL6 and bHLH93-like were characterized as molecular markers for rubber tree late SE. CML13, CML36, CAM-7, SERK1 and LEAD-29-like were related to rubber tree late SE. In addition, histone modification had crucial roles during rubber tree late SE. Conclusions This study provides important information to elucidate the molecular regulation during rubber tree late SE.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Ying Wang ◽  
Hui-Liang Li ◽  
Yong-Kai Zhou ◽  
Dong Guo ◽  
Jia-Hong Zhu ◽  
...  

Abstract Background Somatic embryogenesis (SE) is a promising technology for plant vegetative propagation, which has an important role in tree breeding. Though rubber tree (Hevea brasiliensis Muell. Arg.) SE has been founded, few late SE-related genes have been identified and the molecular regulation mechanisms of late SE are still not well understood. Results In this study, the transcriptomes of embryogenic callus (EC), primary embryo (PE), cotyledonary embryo (CE), abnormal embryo (AE), mature cotyledonary embryo (MCE) and withered abnormal embryo (WAE) were analyzed. A total of 887,852,416 clean reads were generated, 85.92% of them were mapped to the rubber tree genome. The de novo assembly generated 36,937 unigenes. The differentially expressed genes (DEGs) were identified in the pairwise comparisons of CE vs. AE and MCE vs. WAE, respectively. The specific common DEGs were mainly involved in the phytohormones signaling pathway, biosynthesis of phenylpropanoid and starch and sucrose metabolism. Among them, hormone signal transduction related genes were significantly enriched, especially the auxin signaling factors (AUX-like1, GH3.1, SAUR32-like, IAA9-like, IAA14-like, IAA27-like, IAA28-like and ARF5-like). The transcription factors including WRKY40, WRKY70, MYBS3-like, MYB1R1-like, AIL6 and bHLH93-like were characterized as molecular markers for rubber tree late SE. CML13, CML36, CAM-7, SERK1 and LEAD-29-like were also related to rubber tree late SE. In addition, histone modification had crucial roles during rubber tree late SE. Conclusions This study provides important information to elucidate the molecular regulation during rubber tree late SE.


2021 ◽  
Author(s):  
Ying Wang ◽  
Hui-Liang Li ◽  
Yong-Kai Zhou ◽  
Dong Guo ◽  
Jia-Hong Zhu ◽  
...  

Abstract Background: Somatic embryogenesis (SE) is a promising technology for plant vegetative propagation, which has an important role in tree breeding. Though rubber tree (Hevea brasiliensis Muell. Arg.) SE has been founded, few late SE-related genes have been identified and the molecular regulation mechanisms of late SE are still not well understood. Results: In this study, the transcriptomes of embryogenic callus (EC), primary embryo (PE), cotyledonary embryo (CE), abnormal embryo (AE), mature cotyledonary embryo (MCE) and withered abnormal embryo (WAE) were analyzed. A total of 887,852,416 clean reads were generated, 85.92% of them were mapped to the rubber tree genome. The de novo assembly generated 36937 unigenes. The differentially expressed genes (DEGs) were identified in the pairwise comparisons of CE vs. AE and MCE vs. WAE, respectively. The specific common DEGs were mainly involved in the phytohormones signaling pathway, biosynthesis of phenylpropanoid and starch and sucrose metabolism. Among them, hormone signal transduction related genes were significantly enriched, especially the auxin signaling factors (AUX-like1, GH3.1, SAUR32-like, IAA9-like, IAA14-like, IAA27-like, IAA28-like and ARF5-like). The transcription factors including WRKY40, WRKY70, MYBS3-like, MYB1R1-like, AIL6 and bHLH93-like were characterized as molecular markers for rubber tree late SE. CML13, CML36, CAM-7, SERK1 and LEAD-29-like were also related to rubber tree late SE. In addition, histone modification had crucial roles during rubber tree late SE. Conclusions: This study provides important information to elucidate the molecular regulation during rubber tree late SE.


2019 ◽  
Vol 8 (4) ◽  
pp. 6939-6943 ◽  

Incorporation of natural fibers into composites have been continuously researched in moving towards a greener environment. As environmental issues such as climate change and global warming is becoming severe, green technology is one of the ways to reduce it. Hevea brasiliensis or commonly called rubber tree produced a lot of sawdust during the conversion of the raw material into product. The sawdust is known as an agricultural waste which has no economic value. Therefore, this study for the first time attempts to utilize the Hevea brasiliensis sawdust by incorporating it with silicone rubber in the making of a new biocomposite material. The samples were prepared in two weight compositions, 0 wt% and 16 wt% in accordance to ASTM D412. Tensile properties of biocomposite was then determined using 3382 Universal Testing Machine 100kN (Instron, U.S.A., 2008). Neo Hookean hyperelastic model was employed where the material constant, C1 values were obtained. The graph plotted shows that the hyperelastic model used can mimic the deformation behavior of silicone biocomposites. The material constants are observed to increase as Hevea brasiliensis fiber are introduced into it. Hence, it can be concluded that pure silicone rubber has higher tensile strength compared to 16 wt% hevea brasiliensis – silicone biocomposite and the addition of fiber increase the stiffness properties of material produced.


2020 ◽  
Vol 4 (1) ◽  
pp. 397
Author(s):  
Zainal Arifin Munir ◽  
Awiria Awiria

Traditional games of a tribe had often not been known well in the last few decades, traditional games had been shifted to the digital ones that were imported from around the world. This study aimed at finding out how to implement educational values through the traditional game of the Sasak tribe in MI NW Loangawak, Mataram was. The method used was descriptive qualitative analysis. The subjects of this study were students, teachers, and school principals. Data collection techniques used were interviews, observation, and documentation. To check the validity of the data, researchers used data triangulation techniques. The results showed that the implementation of educational values through traditional games was excellent, because traditional games substantially contained and were closely related to natural elements, both in terms of playgrounds, as well as playing tools used in traditional games, such as wooden sticks as raw material for gasing. It played an essential role in bringing people closer to their natural world and bringing a deeper understanding of the place, which they had made for dwellings, as ecological knowledge that was not only considered as a science and harmony of fellow human beings, but also as the soul of life.


2020 ◽  
Author(s):  
Ying Wang ◽  
Hui-Liang Li ◽  
Yong-Kai Zhou ◽  
Dong Guo ◽  
Jia-Hong Zhu ◽  
...  

Abstract Background: Somatic embryogenesis (SE) is a promising technology for plant vegetative propagation, which has an important role in tree breeding. Though rubber tree (Hevea brasiliensis Muell. Arg.) SE has been founded, few late SE-related genes have been identified and the molecular regulation mechanisms of late SE were still not well understood. Results: In this study, the transcriptomes of embryogenic callus (EC), primary embryo (PE), cotyledonary embryo (CE), abnormal embryo (AE), mature cotyledonary embryo (MCE) and withered abnormal embryo (WAE) were analyzed. A total of 887,852,416 clean reads were generated, 85.92% of them were mapped to the rubber tree genome. The de novo assembly generated 36937 unigenes. The differentially expressed genes (DEGs) were identified in the pairwise comparisons of CE vs. AE and MCE vs. WAE, respectively. The specific common DEGs were mainly involved in the phytohormones signaling pathway, biosynthesis of phenylpropanoid and starch and sucrose metabolism. Among them, hormone signal transduction related genes were significantly enriched, especially the auxin signaling factors (AUX-like1, GH3.1, SAUR32-like, IAA9-like, IAA14-like, IAA27-like, IAA28-like and ARF5-like). The transcription factors including WRKY40, WRKY70, MYBS3-like, MYB1R1-like, AIL6 and bHLH93-like were characterized as molecular markers for rubber tree late SE. CML13, CML36, CAM-7, SERK1 and LEAD-29-like were also related to rubber tree late SE. In addition, histone modification had crucial roles during rubber tree late SE. Conclusions: This study provides important information to elucidate the molecular regulation during rubber tree late SE.


Sign in / Sign up

Export Citation Format

Share Document