Tissue tolerance mechanisms conferring salinity tolerance in a halophytic perennial species Nitraria sibirica Pall.

2020 ◽  
Author(s):  
Xiaoqian Tang ◽  
Huilong Zhang ◽  
Sergey Shabala ◽  
Huanyong Li ◽  
Xiuyan Yang ◽  
...  

Abstract Plant salt tolerance relies on a coordinated functioning of different tissues and organs. Salinity tissue tolerance is one of the key traits that confers plant adaptation to saline environment. This trait implies maintenance low cytosolic Na+/K+ ratio in metabolically active cellular compartments. In this study, we used Nitraria sibirica Pall., a perennial woody halophytes species, to understand the mechanistic basis of its salinity tissue tolerance. The results showed that the growth of seedlings was stimulated by 100-200 mM NaCl treatment. The ions distribution analysis showed that the leaves acted as Na+ sink while plant root possess superior K+ retention. The excessive Na+ absorbed from soil was mainly transported to the shoot and eventually sequestrated into mesophyll vacuoles in the leaves. As a result, N. sibirica could keep optimal balance of K+/Na+ at a tissue- and cell-specific level under saline condition. To enable this, N. sibirica increased both vacuolar H+-ATPase and H+-PPase enzymes activities and up-regulated expressions of NsVHA, NsVP1 and NsNHX1 genes. Vacuolar Na+ sequestration in the leaf mesophyll mediated by NsVHA, NsVP1 and NsNHX1 reduced the Na+ concentration in cytosol and inhibited further K+ loss. Meanwhile, N.sibirica enhanced the TPK expression at the transcriptional level to promote K+ efflux from vacuole into cytoplasm, assisting in maintaining cytosolic K+ homeostasis. It is concluded that the tissue tolerance traits such as vacuolar Na+ sequestration and intracellular K+ homeostasis is critical to confer adaptation of N. sibirica to soil salinity.

2019 ◽  
Vol 85 (22) ◽  
Author(s):  
Simone Eckstein ◽  
Nazzareno Dominelli ◽  
Andreas Brachmann ◽  
Ralf Heermann

ABSTRACT Photorhabdus luminescens is a Gram-negative bacterium that lives in symbiosis with soil nematodes and is simultaneously highly pathogenic toward insects. The bacteria exist in two phenotypically different forms, designated primary (1°) and secondary (2°) cells. Yet unknown environmental stimuli as well as global stress conditions induce phenotypic switching of up to 50% of 1° cells to 2° cells. An important difference between the two phenotypic forms is that 2° cells are unable to live in symbiosis with nematodes and are therefore believed to remain in the soil after a successful infection cycle. In this work, we performed a transcriptomic analysis to highlight and better understand the role of 2° cells and their putative ability to adapt to living in soil. We could confirm that the major phenotypic differences between the two cell forms are mediated at the transcriptional level as the corresponding genes were downregulated in 2° cells. Furthermore, 2° cells seem to be adapted to another environment as we found several differentially expressed genes involved in the cells’ metabolism, motility, and chemotaxis as well as stress resistance, which are either up- or downregulated in 2° cells. As 2° cells, in contrast to 1° cells, chemotactically responded to different attractants, including plant root exudates, there is evidence for the rhizosphere being an alternative environment for the 2° cells. Since P. luminescens is biotechnologically used as a bio-insecticide, investigation of a putative interaction of 2° cells with plants is also of great interest for agriculture. IMPORTANCE The biological function and the fate of P. luminescens 2° cells were unclear. Here, we performed comparative transcriptomics of P. luminescens 1° and 2° cultures and found several genes, not only those coding for known phenotypic differences of the two cell forms, that are up- or downregulated in 2° cells compared to levels in 1° cells. Our results suggest that when 1° cells convert to 2° cells, they drastically change their way of life. Thus, 2° cells could easily adapt to an alternative environment such as the rhizosphere and live freely, independent of a host, putatively utilizing plant-derived compounds as nutrient sources. Since 2° cells are not able to reassociate with the nematodes, an alternative lifestyle in the rhizosphere would be conceivable.


2018 ◽  
Vol 125 (2) ◽  
pp. 304-312 ◽  
Author(s):  
Michael D. Hodgson ◽  
Daniel A. Keir ◽  
David B. Copithorne ◽  
Charles L. Rice ◽  
John M. Kowalchuk

In ramp-incremental cycling exercise, some individuals are capable of producing power output (PO) in excess of that produced at their limit of tolerance (LoT) whereas others cannot. This study sought to describe the 1) prevalence of a “power reserve” within a group of young men ( n = 21; mean ± SD: age 25 ± 4 yr; V̇o2max 45 ± 8 ml·kg−1·min−1); and 2) muscle fatigue characteristics of those with and without a power reserve. “Power reserve” (ΔPReserve) was determined as the difference between peak PO achieved during a ramp-incremental test to exhaustion and maximal, single-leg isokinetic dynamometer power determined within 45 s of completing the ramp-incremental test. Between-group differences in pre- vs. postexercise changes in voluntary and electrically stimulated single-leg muscle force production measures (maximal voluntary contraction torque, voluntary activation, maximal isotonic velocity and isokinetic power; 1-, 10-, 50-Hz torque; and 10/50-Hz ratio), V̇o2max, and constant-PO cycling time-to-exhaustion also were assessed. Frequency distribution analysis revealed a dichotomy in the prevalence of a power reserve within the sample resulting in two groups: 1) “No Reserve” (NRES: power reserve <5%; n = 10) and 2) “Reserve” (RES: power reserve >15%; n = 11). At the LoT, all participants had achieved V̇o2max. Muscle fatigue was evident in both groups, although the NRES group had greater reductions ( P < 0.05) in 10-Hz peak torque (PT), 10/50 Hz ratio, and maximal velocity. Time to the LoT during the constant PO test was 22 ± 16% greater ( P < 0.05) in RES (116 ± 19 s; PO = 317 ± 52 W) than in NRES (90 ± 23 s; PO = 337 ± 71 W), despite similar ramp-incremental exercise durations and V̇o2max between groups. Compared with the RES group, the NRES group accrued greater peripheral muscle fatigue at the LoT, suggesting that the mechanisms contributing to exhaustion in a ramp-incremental protocol are not uniform. NEW & NOTEWORTHY This study demonstrates that the mechanisms associated with the limit of tolerance during ramp-incremental cycling exercise differ between those who are capable of generating power output in excess of that at exercise termination vs. those who are not. Those without a “power reserve” exhibit greater peripheral muscle fatigue and reduced muscle endurance, supporting the hypothesis that exhaustion occurs at a specific level of neuromuscular fatigue. In contrast, those with a power reserve likely are limited by other mechanisms.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 8-8
Author(s):  
Adam Utley ◽  
Kelvin P. Lee ◽  
Mark Hicar

The COVID-19 pandemic has ravaged the global community and highlighted the importance of antibody-mediated antiviral immune responses. The SARS-CoV-2 virus is highly pathogenic, but is unique from other viral infections in that pediatric patients are largely spared from severe symptoms. However, a small number of pediatric patients present autoimmune-like symptoms after COVID-19 infection, termed Multisystem Inflammatory Syndrome in Children, or MIS-C. Symptomatically, it shares some similarity to that of Kawasaki's Disease (KD), an autoimmune disorder linked to coronavirus infection thought to be driven by autoantibody production. Understanding the immunological mechanisms that facilitate clearance of SARS-CoV-2 or drive the development of life-threatening autoimmune symptoms in MIS-C or KD is critical for our ability to design successful vaccines that do not elicit autoimmunity in children. Antibodies are produced by terminally differentiated B lymphocytes known as Plasma Cells (PC). Because successful immune responses/vaccination strategies against SARS-CoV-2 are dependent upon effective PC production, the dysregulation of which may lead to the development of Kawasaki's Disease or MIS-C, it is critical to understand the immunological mechanisms that define the pediatric PC response leading to these individual outcomes. We therefore sought to characterize the B cell-PC immune response in pediatric patients that have successfully cleared SARS-CoV-2 and compare the B cell immunological landscape to children who develop either KD or MIS-C. We used the 10X Genomics Platform to interrogate at a single cell level the CD19+ B/PC populations in the peripheral blood of pediatric patients at the transcriptional level as well as with VDJ deep sequencing. We began by clustering the CD19+ populations based on transcriptional similarity and found that both COVID-19 and KD exhibited 12 distinct clusters, but that MIS-C only had 6 clusters. Intriguingly, in evaluating clonal diversity, KD presented a broad spectrum of clonotypes while the COVID-19 and MISC patients were much more limited. This suggested that although KD and MIS-C both present with similar autoimmune-like symptoms, the mechanistic basis for their respective etiology may be distinct. We therefore sought to more deeply probe the subset of cells responsible for antibody production by evaluating the PC subsets. High BLIMP1 expression (PC lineage-defining transcription factor) was present in 2 distinct clusters in COVID-19/KD patients, but was broadly distributed at lower levels in MIS-C. We then looked at genes which were significantly upregulated in the most terminally differentiated cells from each patient. 50 genes were significantly higher in the COVID-19 and KD populations, and 54 in MIS-C. Using gene ontology analysis in COVID-19 and KD, we saw increased expression of transcripts involved in protein trafficking, redox responses, and respiratory metabolism. In comparison, the MIS-C patient demonstrated significance for programs involved in immature B cell development and inflammation. Taken together, this suggests that in COVID-19 and KD there is a program of terminal PC differentiation which is absent in MIS-C. To understand the mechanistic basis for the terminal differentiation in COVID-19 and KD, we sought to probe possible regulators of PC fate. We have recently published that CD28, the canonical T cell costimulatory molecule, is expressed by PC, and CD28 signaling through the adaptor protein SLP-76 leads to increased BLIMP1 expression and an IRF4-mediated metabolic program necessary for PC survival. Interestingly, SLP-76 was expressed at high levels in COVID-19 and KD patients, but was low in MIS-C. Similarly, CD28 was expressed in both COVID-19 and KD patients and correlated with higher IRF4 levels and metabolic genes, but was entirely absent in MIS-C. Taken together, these findings suggest that CD28 signaling may facilitate PC fate in COVID-19 pediatric patients and the development of KD arises from broad antibody specificity, possibly explaining how vascular antigens become targets. Furthermore, MIS-C, although similar in symptomatic presentation to KD, has an etiology driven by antigen-independent inflammation arising from immature B cells due to a lack of CD28-mediated PC differentiation and survival, which can be evaluated diagnostically by simple flow cytometry in a vaccination setting. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 9 (2) ◽  
pp. 250
Author(s):  
David Lalaouna ◽  
Sylvain Fochesato ◽  
Mourad Harir ◽  
Philippe Ortet ◽  
Philippe Schmitt-Kopplin ◽  
...  

In the beneficial plant root-associated Pseudomonas brassicacearum strain NFM421, the GacS/GacA two-component system positively controls biofilm formation and the production of secondary metabolites through the synthesis of rsmX, rsmY and rsmZ. Here, we evidenced the genetic amplification of Rsm sRNAs by the discovery of a novel 110-nt long sRNA encoding gene, rsmX-2, generated by the duplication of rsmX-1 (formerly rsmX). Like the others rsm genes, its overexpression overrides the gacA mutation. We explored the expression and the stability of rsmX-1, rsmX-2, rsmY and rsmZ encoding genes under rich or nutrient-poor conditions, and showed that their amount is fine-tuned at the transcriptional and more interestingly at the post-transcriptional level. Unlike rsmY and rsmZ, we noticed that the expression of rsmX-1 and rsmX-2 genes was exclusively GacA-dependent. The highest expression level and longest half-life for each sRNA were correlated with the highest ppGpp and cyclic-di-GMP levels and were recorded under nutrient-poor conditions. Together, these data support the view that the Rsm system in P. brassicacearum is likely linked to the stringent response, and seems to be required for bacterial adaptation to nutritional stress.


Author(s):  
H.P. Rohr

Today, in image analysis the broadest possible rationalization and economization have become desirable. Basically, there are two approaches for image analysis: The image analysis through the so-called scanning methods which are usually performed without the human eye and the systems of optical semiautomatic analysis completely relying on the human eye.The new MOP AM 01 opto-manual system (fig.) represents one of the very promising approaches in this field. The instrument consists of an electronic counting and storing unit, which incorporates a microprocessor and a keyboard for choice of measuring parameters, well designed for easy use.Using the MOP AM 01 there are three possibilities of image analysis:the manual point counting,the opto-manual point counting andthe measurement of absolute areas and/or length (size distribution analysis included).To determine a point density for the calculation of the corresponding volume density the intercepts lying within the structure are scanned with the light pen.


Author(s):  
T. Egami ◽  
H. D. Rosenfeld ◽  
S. Teslic

Relaxor ferroelectrics, such as Pb(Mg1/3Nb2/3)O3 (PMN) or (Pb·88La ·12)(Zr·65Ti·35)O3 (PLZT), show diffuse ferroelectric transition which depends upon frequency of the a.c. field. In spite of their wide use in various applications details of their atomic structure and the mechanism of relaxor ferroelectric transition are not sufficiently understood. While their crystallographic structure is cubic perovskite, ABO3, their thermal factors (apparent amplitude of thermal vibration) is quite large, suggesting local displacive disorder due to heterovalent ion mixing. Electron microscopy suggests nano-scale structural as well as chemical inhomogeneity.We have studied the atomic structure of these solids by pulsed neutron scattering using the atomic pair-distribution analysis. The measurements were made at the Intense Pulsed Neutron Source (IPNS) of Argonne National Laboratory. Pulsed neutrons are produced by a pulsed proton beam accelerated to 750 MeV hitting a uranium target at a rate of 30 Hz. Even after moderation by a liquid methane moderator high flux of epithermal neutrons with energies ranging up to few eV’s remain.


2008 ◽  
Vol 11 (2) ◽  
pp. 56-60 ◽  
Author(s):  
Jill K. Duthie

Abstract Clinical supervisors in university based clinical settings are challenged by numerous tasks to promote the development of self-analysis and problem-solving skills of the clinical student (American Speech-Language-Hearing Association, ASHA, 1985). The Clinician Directed Hierarchy is a clinical training tool that assists the clinical teaching process by directing the student clinician’s focus to a specific level of intervention. At each of five levels of intervention, the clinician develops an understanding of the client’s speech/language target behaviors and matches clinical support accordingly. Additionally, principles and activities of generalization are highlighted for each intervention level. Preliminary findings suggest this is a useful training tool for university clinical settings. An essential goal of effective clinical supervision is the provision of support and guidance in the student clinician’s development of independent clinical skills (Larson, 2007). The student clinician is challenged with identifying client behaviors in the therapeutic process and learning to match his or her instructions, models, prompts, reinforcement, and use of stimuli appropriately according to the client’s needs. In addition, the student clinician must be aware of techniques in the intervention process that will promote generalization of new communication behaviors. Throughout the intervention process, clinicians are charged with identifying appropriate target behaviors, quantifying the progress of the client’s acquisition of the targets, and making adjustments within and between sessions as necessary. Central to the development of clinical skills is the feedback provided by the clinical supervisor (Brasseur, 1989; Moss, 2007). Particularly in the early stages of clinical skills development, the supervisor is challenged with addressing numerous aspects of clinical performance and awareness, while ensuring the client’s welfare (Moss). To address the management of clinician and client behaviors while developing an understanding of the clinical intervention process, the University of the Pacific has developed and begun to implement the Clinician Directed Hierarchy.


2010 ◽  
Vol 30 (S 01) ◽  
pp. S28-S31 ◽  
Author(s):  
J. Arroyo ◽  
L. Salazar-Sánchez ◽  
G. Jiménez-Cruz ◽  
P. Chaverri ◽  
E. Arrieta-Bolaños ◽  
...  

SummaryHaemophilia is the most frequent hereditary haemorrhagic illness and it is due to the deficiency of coagulation factors VIII (haemophilia A, HA) or IX (haemophilia B, HB).The prevalence of this disease varies according to the country, those having better survival rates having also higher prevalences. Specifically in Costa Rica, there are around 130 HA and 30 HB families. This study reports the prevalence and a spatial distribution analysis of both types of the disease in this country. The prevalence of haemophilia in this country is 7 cases per 100 000 men, for HA it is 6 cases per 100 000 and for HB it is 1 case per 100 000 male inhabitants. The prevalence of this disease is low when compared with other populations. This low prevalence could be due to the many patients that have died because of infection with human immunodeficiency virus during the 1980s. The prevalence of haemophilia in Costa Rica is almost one half of that present in developed countries. Nevertheless, the ratio between HA and HB follows world tendency: 5 : 1. In this study, nationwide geographical distribution maps were drawn in order to visualize the origin of severe cases and how this influences the pattern of distribution for both types of haemophilia. By means of these maps, it was possible to state that there is no association between the sites of maximum prevalence of mutated alleles and ethnicity. With this study, haemophilia prevalence distribution maps can be used to improve efforts for the establishment of hemophilia clinics or specialized health centers in those areas which hold the highest prevalences in this country. Also, this knowledge can be applied to improve treatment skills and offer the possibility of developing focused genetic counseling for these populations.


Sign in / Sign up

Export Citation Format

Share Document