Charlton, Prof. David, Professor of Particle Physics, University of Birmingham, since 2005; Spokesperson, ATLAS Collaboration at Large Hadron Collider, CERN, Geneva, since 2013 (Deputy Spokesperson, 2009–13)

2014 ◽  
Vol 29 (27) ◽  
pp. 1430062 ◽  
Author(s):  
Sau Lan Wu

In 1964, a new particle was proposed by several groups to answer the question of where the masses of elementary particles come from; this particle is usually referred to as the Higgs particle or the Higgs boson. In July 2012, this Higgs particle was finally found experimentally, a feat accomplished by the ATLAS Collaboration and the CMS Collaboration using the Large Hadron Collider at CERN. It is the purpose of this review to give my personal perspective on a brief history of the experimental search for this particle since the '80s and finally its discovery in 2012. Besides the early searches, those at the LEP collider at CERN, the Tevatron Collider at Fermilab, and the Large Hadron Collider at CERN are described in some detail. This experimental discovery of the Higgs boson is often considered to be one of the most important advances in particle physics in the last half a century, and some of the possible implications are briefly discussed. This review is based on a talk presented by the author at the conference "OCPA8 International Conference on Physics Education and Frontier Physics," the 8th Joint Meeting of Chinese Physicists Worldwide, Nanyang Technological University, Singapore, June 23–27, 2014.


2014 ◽  
Vol 29 (09) ◽  
pp. 1330027 ◽  
Author(s):  
Sau Lan Wu

In 1964, a new particle was proposed by several groups to answer the question of where the masses of elementary particles come from; this particle is usually referred to as the Higgs particle or the Higgs boson. In July 2012, this Higgs particle was finally found experimentally, a feat accomplished by the ATLAS Collaboration and the CMS Collaboration using the Large Hadron Collider at CERN. It is the purpose of this review to give my personal perspective on a brief history of the experimental search for this particle since the '80s and finally its discovery in 2012. Besides the early searches, those at the LEP collider at CERN, the Tevatron Collider at Fermilab, and the Large Hadron Collider at CERN are described in some detail. This experimental discovery of the Higgs boson is often considered to be the most important advance in particle physics in the last half a century, and some of the possible implications are briefly discussed. This review is partially based on a talk presented by the author at the conference "Higgs Quo Vadis," Aspen Center for Physics, Aspen, CO, USA, March 10–15, 2013.


2018 ◽  
Vol 68 (1) ◽  
pp. 429-459 ◽  
Author(s):  
Antonio Boveia ◽  
Caterina Doglioni

Colliders, among the most successful tools of particle physics, have revealed much about matter. This review describes how colliders contribute to the search for particle dark matter, focusing on the highest-energy collider currently in operation, the Large Hadron Collider (LHC) at CERN. In the absence of hints about the character of interactions between dark matter and standard matter, this review emphasizes what could be observed in the near future, presents the main experimental challenges, and discusses how collider searches fit into the broader field of dark matter searches. Finally, it highlights a few areas to watch for the future LHC program.


Author(s):  
Chris Llewellyn Smith

The Large Hadron Collider (LHC) machine and detectors are now working superbly. There are good reasons to hope and expect that the new domain that the LHC is already exploring, operating at 7 TeV with a luminosity of 10 33  cm −2  s −1 , or the much bigger domain that will be opened up as the luminosity increases to over 10 34 and the energy to 14 TeV, will provide clues that will usher in a new era in particle physics. The arguments that new phenomena will be found in the energy range that will be explored by the LHC have become stronger since they were first seriously analysed in 1984, although their essence has changed little. I will review the evolution of these arguments in a historical context, the development of the LHC project since 1984, and the outlook in the light of reports on the performance of the machine and detectors presented at this meeting.


2009 ◽  
Vol 24 (18n19) ◽  
pp. 3286-3296 ◽  
Author(s):  
ZHI-ZHONG XING

I argue that TeV neutrino physics might become an exciting frontier of particle physics in the era of the Large Hadron Collider (LHC). The origin of non-zero but tiny masses of three known neutrinos is probably related to the existence of some heavy degrees of freedom, such as heavy Majorana neutrinos or heavy Higgs bosons, via a TeV-scale seesaw mechanism. I take a few examples to illustrate how to get a balance between theoretical naturalness and experimental testability of TeV seesaws. Besides possible collider signatures at the LHC, new and non-unitary CP-violating effects are also expected to show up in neutrino oscillations for type-I, type-(I+II) and type-III seesaws at the TeV scale.


2014 ◽  
Vol 03 (02) ◽  
pp. 23-24
Author(s):  

A team of physicists from Hong Kong has now formally joined one of the most prestigious physics experiments in the world. Following a unanimous vote of approval today by its Collaboration Board, ATLAS has admitted the Hong Kong team as a member. The ATLAS Collaboration operates one of the largest particle detectors in the world, located at the Large Hadron Collider (LHC), the world's highest energy particle accelerator at CERN, Switzerland. In 2012, the ATLAS team — along with the CMS Collaboration — co-discovered the Higgs boson, or so-called 'God Particle'. The gigantic but sensitive and precise ATLAS detector, together with the unprecedentedly high collision energy and luminosity of the LHC, make it possible to search for fundamentally new physics, such as dark matter, hidden extra dimensions, and supersymmetry — a proposed symmetry among elementary particles. The LHC is currently undergoing an upgrade, targeting a substantial increase in beam energy and intensity in a year's time. It is widely expected that the discovery of the Higgs boson is only the beginning of an era of new breakthroughs in fundamental physics. All these exciting opportunities are now opened up to scientists and students from Hong Kong.


2018 ◽  
Vol 191 ◽  
pp. 02015
Author(s):  
Mikhail Vysotsky ◽  
Evgenii Zhemchugov

The Large Hadron Collider is considered as a photon-photon collider with the photons produced in ultraperipheral collisions of protons or heavy ions. The equivalent photon approximation is applied to derive analytical formulae for the fiducial cross sections of reactions pp(γγ) → pp μ+μ- and Pb Pb (γγ) → Pb Pb μ+μ-. The results are compared to the measurements reported by the ATLAS collaboration.


Sign in / Sign up

Export Citation Format

Share Document