Grain Sorghum Water Requirement and Responses to Drought Stress: A Review

2010 ◽  
Vol 9 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Yared Assefa ◽  
Scott A. Staggenborg ◽  
Vara P. V. Prasad
2020 ◽  
Vol 33 (02) ◽  
pp. 694-706
Author(s):  
Hassan Sarhadi ◽  
Jahanfar Daneshian ◽  
Seyyed Alireza Valadabadi ◽  
Hossein Heidary Sharafabad ◽  
Hossein Heidary Sharafabad ◽  
...  

The response of active ingredient, chlorophyll a and b contents, and chlorophyll index of henna to different rates of N fertilization and drought stress was explored in a split-split-plot experiment based on a randomized complete block design with four replications in the research farm of Jiroft Branch, Islamic Azad University, Jiroft, Iran in the 2016-2017 growing season. In the current study, the main plot was assigned to drought stress at three levels (including irrigation to supply 100%, 75% or 50% of plant water requirement), the sub-plot was assigned to N fertilization at three rates (50, 100 or 150 kg ha-1 pure N), and the sub-sub-plot was assigned to ecotype at three levels (Bami, Bushehri, and Rudbari). The results showed that the effect of drought level was significant on active ingredient and chlorophyll index at the p < 0.01 level and on chlorophyll a, total chlorophyll, and chlorophyll a/b ratio at the p < 0.05 level.  But, it could not influence chlorophyll b significantly. The effect of N fertilization was significant on most studied traits at the p< 0.01 level, but its effect was significant on the chlorophyll index at the p < 0.05 level and insignificant on dye and chlorophyll b. According to the results, it seems that the application of 100 kg ha-1 N and the irrigation to supply 75% of plant water requirement can contribute to having more fresh plants with the higher active ingredient and dye contents.


2017 ◽  
Vol 16 (3) ◽  
Author(s):  
P S C Batista ◽  
C B Menezes ◽  
A J Carvalho ◽  
A F Portugal ◽  
E A Bastos ◽  
...  

2021 ◽  
Vol 3 ◽  
Author(s):  
Chris Funk ◽  
Will Turner ◽  
Amy McNally ◽  
Andrew Hoell ◽  
Laura Harrison ◽  
...  

Sharing simple ideas across a broad community of practitioners helps them to work together more effectively. For this reason, drought early warning systems spend a considerable effort on describing how hazards are detected and defined. Well-articulated definitions of drought provide a shared basis for collaboration, response planning, and impact mitigation. One very useful measure of agricultural drought stress has been the “Water Requirement Satisfaction Index” (WRSI). In this study, we develop a new, simpler metric of water requirement satisfaction, the Phenological Water Balance (PWB). We describe this metric, compare it to WRSI and yield statistics in a food-insecure region (east Africa), and show how it can be easily combined with analog-based rainfall forecasts to produce end-of-season estimates of growing season water deficits. In dry areas, the simpler PWB metric is very similar to the WRSI. In these regions, we show that the coupling between rainfall deficits and increased reference evapotranspiration amplifies the impacts of droughts. In wet areas, on the other hand, our new metric provides useful information about water excess—seasons that are so wet that they may not be conducive to good agricultural outcomes. Finally, we present a PWB-based forecast example, demonstrating how this framework can be easily used to translate assumptions about seasonal rainfall outcomes into predictions of growing season water deficits. Effective humanitarian relief efforts rely on early projections of these deficits to design and deploy appropriate targeted responses. At present, it is difficult to combine gridded satellite-gauge precipitation forecasts with climate forecasts. Our new metric helps overcome this obstacle. Future extensions could use the water requirement framework to contextualize other water supply indicators, like actual evapotranspiration values derived from satellite observations or hydrologic models.


1983 ◽  
Vol 75 (6) ◽  
pp. 997-1004 ◽  
Author(s):  
Dennis P. Garrity ◽  
Charles Y. Sullivan ◽  
Darrell G. Watts

1988 ◽  
Vol 2 (4) ◽  
pp. 437-441 ◽  
Author(s):  
Daniel B. Reynolds ◽  
Trina G. Wheless ◽  
E. Basler ◽  
Don S. Murray

Laboratory experiments with14C-herbicides were conducted with grain sorghum as an indicator species to determine the effects of imposed moisture stress on absorption, precent recovery, and acropetal and basipetal translocation of the butyl ester of fluazifop, the methyl ester of haloxyfop, the ethyl ester of quizalofop, and sethoxydim. Haloxyfop was the only herbicide where recovery decreased between the 3-and 48-h interval. All plants absorbed more of the herbicide at the 48-h interval than at the 3- or 6-h interval under both stressed and non-stressed conditions. Increased drought stress caused more acropetal movement with fluazifop and sethoxydim and less acropetal movement with quizalofop at the 3-h interval. Basipetal transloation, although different among herbicides, responded similarly to imposed moisture stress, which decreased basipetal translocation approximately 19%.


Author(s):  
Cicero Beserra de Menezes ◽  
Karla Jorge da Silva ◽  
Larissa Pereira Ribeiro Teodoro ◽  
Crislene Vieira dos Santos ◽  
Bruno Henrique Mingote Julio ◽  
...  

2020 ◽  
Vol 73 (1) ◽  
Author(s):  
Sajad Bagheri ◽  
Mohammad Reza Hassandokht ◽  
Abbas Mirsoleimani ◽  
Amir Mousavi

To investigate the effect of palm leaf biochar on the element absorption and reduction of drought stress effects in melon plants, an experiment was conducted using a split plot in a randomized complete block design with three replications in two successive years. The main plot contained three levels of drought stress (60%, 85%, and 100% water requirement) and the subplot contained four levels of biochar (0, 150, 300, and 450 g per plant). The results revealed that biochar application reduced the effect of drought stress and thus proline content in plants. Application of 300 g biochar per plant with 100% water requirement increased total chlorophyll by 131% compared to control. The treatment of 450 g biochar per plant with 100% water requirement increased chlorophyll a and b and leaf nitrogen (N), potassium (K), calcium (Ca), and manganese (Mn) content by 169%, 127%, 58%, 65%, 44%, and 48%, respectively, compared to control. The treatment of 450 g biochar per plant increased phosphorus (P) and magnesium (Mg) content of leaves by 20% and 31%, respectively, in comparison with control. The interaction of drought stress and biochar indicated that the treatment of 450 g biochar per plant with 60% of water requirement increased plant iron, zinc, and copper by 60%, 44%, and 66%, respectively, compared to the biochar-free treatment with 100% water requirement. Addition of 450 g biochar per plant and irrigation with 60% of water requirement increased soil N, P, and K by 150%, 13%, and 75%, respectively, compared to the biochar-free treatment with 100% water requirement. The results indicated that the use of biochar can be a successful strategy for improving water use efficiency and reducing drought stress in melon plants.


Sign in / Sign up

Export Citation Format

Share Document