scholarly journals Conservation in Function of a SCAR/WAVE Component During Infection Thread and Root Hair Growth in Medicago truncatula

2010 ◽  
Vol 23 (12) ◽  
pp. 1553-1562 ◽  
Author(s):  
Akira Miyahara ◽  
Jennifer Richens ◽  
Colby Starker ◽  
Giulia Morieri ◽  
Lucinda Smith ◽  
...  

Nitrogen-fixing symbioses of plants are often associated with bacterially infected nodules where nitrogen fixation occurs. The plant host facilitates bacterial infection with the formation of infection threads, unique structures associated with these symbioses, which are invaginations of the host cell with the capability of traversing cellular junctions. Here, we show that the infection thread shares mechanistic similarities to polar-growing cells, because the required for infection thread (RIT) locus of Medicago truncatula has roles in root-hair, trichome, and infection-thread growth. We show that RIT encodes the M. truncatula ortholog of NAP1, a component of the SCAR/WAVE (suppressor of cAMP receptor/WASP-family verprolin homologous protein) complex that regulates actin polymerization, through the activation of ARP2/3. NAP1 of Arabidopsis thaliana functions equivalently to the M. truncatula gene, indicating that the mode of action of NAP1 is functionally conserved across species and that legumes have not evolved a unique functionality for NAP1 during rhizobial colonization. This work highlights the surprising commonality between polar-growing cells and a polar-growing cellular intrusion and reveals important insights into the formation and maintenance of infection-thread development.

2004 ◽  
Vol 68 (2) ◽  
pp. 280-300 ◽  
Author(s):  
Daniel J. Gage

SUMMARY Bacteria belonging to the genera Rhizobium, Mesorhizobium, Sinorhizobium, Bradyrhizobium, and Azorhizobium (collectively referred to as rhizobia) grow in the soil as free-living organisms but can also live as nitrogen-fixing symbionts inside root nodule cells of legume plants. The interactions between several rhizobial species and their host plants have become models for this type of nitrogen-fixing symbiosis. Temperate legumes such as alfalfa, pea, and vetch form indeterminate nodules that arise from root inner and middle cortical cells and grow out from the root via a persistent meristem. During the formation of functional indeterminate nodules, symbiotic bacteria must gain access to the interior of the host root. To get from the outside to the inside, rhizobia grow and divide in tubules called infection threads, which are composite structures derived from the two symbiotic partners. This review focuses on symbiotic infection and invasion during the formation of indeterminate nodules. It summarizes root hair growth, how root hair growth is influenced by rhizobial signaling molecules, infection of root hairs, infection thread extension down root hairs, infection thread growth into root tissue, and the plant and bacterial contributions necessary for infection thread formation and growth. The review also summarizes recent advances concerning the growth dynamics of rhizobial populations in infection threads.


2006 ◽  
Vol 19 (12) ◽  
pp. 1444-1450 ◽  
Author(s):  
Fabien Lombardo ◽  
Anne B. Heckmann ◽  
Hiroki Miwa ◽  
Jillian A. Perry ◽  
Koji Yano ◽  
...  

During the symbiotic interaction between legumes and rhizobia, the host cell plasma membrane and associated plant cell wall invaginate to form a tunnel-like infection thread, a structure in which bacteria divide to reach the plant root cortex. We isolated four Lotus japonicus mutants that make infection pockets in root hairs but form very few infection threads after inoculation with Mesorhizobium loti. The few infection threads that did initiate in the mutants usually did not progress further than the root hair cell. These infection-thread deficient (itd) mutants were unaffected for early symbiotic responses such as calcium spiking, root hair deformation, and curling, as well as for the induction of cortical cell division and the arbuscular mycorrhizal symbiosis. Complementation tests and genetic mapping indicate that itd2 is allelic to Ljsym7, whereas the itd1, itd3, and itd4 mutations identified novel loci. Bacterial release into host cells did occur occasionally in the itd1, itd2, and itd3 mutants suggesting that some infections may succeed after a long period and that infection of nodule cells could occur normally if the few abnormal infection threads that were formed reached the appropriate nodule cells.


1982 ◽  
Vol 60 (2) ◽  
pp. 152-161 ◽  
Author(s):  
B. Gillian Turgeon ◽  
Wolfgang D. Bauer

The time course of early infection events in Glycine max following inoculation with Rhizobium japonicum is described. Bacteria became attached to epidermal cells and root hairs within minutes of inoculation. Marked root hair curling occurred within 12 h. Infection thread formation was visible at the light microscope level of resolution about 24 h after inoculation. Infections were observed in short, tightly curled root hairs. These root hairs had not yet emerged at the time of inoculation. Infection threads appeared to originate in pockets formed by contact of the cell wall of the curled root hair with itself. Infection threads in the hairs were multiple and (or) branched. By 48 h, the infection thread(s) had progressed to the base of the root hair but had not yet penetrated into the cortex. Increases in cortical cell cytoplasm and in mitotic division occurred in advance of the penetrating infection thread. A nodule meristem developed in the outer cortex next to the infected root hair by 4 days and was accompanied by cell division across the cortex.


2018 ◽  
Vol 178 (2) ◽  
pp. 936-949 ◽  
Author(s):  
Jisheng Li ◽  
Sisi Chen ◽  
Xiaofeng Wang ◽  
Cong Shi ◽  
Huaxin Liu ◽  
...  

Development ◽  
2001 ◽  
Vol 128 (9) ◽  
pp. 1507-1518 ◽  
Author(s):  
R. Catoira ◽  
A.C. Timmers ◽  
F. Maillet ◽  
C. Galera ◽  
R.V. Penmetsa ◽  
...  

The symbiotic infection of the model legume Medicago truncatula by Sinorhizobium meliloti involves marked root hair curling, a stage where entrapment of the microsymbiont occurs in a chamber from which infection thread formation is initiated within the root hair. We have genetically dissected these early symbiotic interactions using both plant and rhizobial mutants and have identified a M. truncatula gene, HCL, which controls root hair curling. S. meliloti Nod factors, which are required for the infection process, induced wild-type epidermal nodulin gene expression and root hair deformation in hcl mutants, while Nod factor induction of cortical cell division foci was reduced compared to wild-type plants. Studies of the position of nuclei and of the microtubule cytoskeleton network of hcl mutants revealed that root hair, as well as cortical cells, were activated in response to S. meliloti. However, the asymmetric microtubule network that is typical of curled root hairs, did not form in the mutants, and activated cortical cells did not become polarised and did not exhibit the microtubular cytoplasmic bridges characteristic of the pre-infection threads induced by rhizobia in M. truncatula. These data suggest that hcl mutations alter the formation of signalling centres that normally provide positional information for the reorganisation of the microtubular cytoskeleton in epidermal and cortical cells.


2005 ◽  
Vol 18 (6) ◽  
pp. 533-538 ◽  
Author(s):  
M. C. Laus ◽  
A. A. N. van Brussel ◽  
J. W. Kijne

Infection and subsequent nodulation of legume host plants by the root nodule symbiote Rhizobium leguminosarum usually require attachment of the bacteria to root-hair tips. Bacterial cellulose fibrils have been shown to be involved in this attachment process but appeared not to be essential for successful nodulation. Detailed analysis of Vicia sativa root-hair infection by wild-type Rhizobium leguminosarum RBL5523 and its cellulose fibril-deficient celE mutant showed that wild-type bacteria infected elongated growing root hairs, whereas cellulose-deficient bacteria infected young emerging root hairs. Exopolysaccharide-deficient strains that retained the ability to produce cellulose fibrils could also infect elongated root hairs but infection thread colonization was defective. Cellulose-mediated agglutination of these bacteria in the root-hair curl appeared to prevent entry into the induced infection thread. Infection experiments with V. sativa roots and an extracellular polysaccharide (EPS)- and cellulose-deficient double mutant showed that cellulose-mediated agglutination of the EPS-deficient bacteria in the infection thread was now abolished and that infection thread colonization was partially restored. Interestingly, in this case, infection threads were initiated in root hairs that originated from the cortical cell layers of the root and not in epidermal root hairs. Apparently, surface polysaccharides of R. leguminosarum, such as cellulose fibrils, are determining factors for infection of different developmental stages of root hairs.


Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Angus E. Rae ◽  
Vivien Rolland ◽  
Rosemary G. White ◽  
Ulrike Mathesius

Abstract Background The formation of infection threads in the symbiotic infection of rhizobacteria in legumes is a unique, fascinating, and poorly understood process. Infection threads are tubes of cell wall material that transport rhizobacteria from root hair cells to developing nodules in host roots. They form in a type of reverse tip-growth from an inversion of the root hair cell wall, but the mechanism driving this growth is unknown, and the composition of the thread wall remains unclear. High resolution, 3-dimensional imaging of infection threads, and cell wall component specific labelling, would greatly aid in our understanding of the nature and development of these structures. To date, such imaging has not been done, with infection threads typically imaged by GFP-tagged rhizobia within them, or histochemically in thin sections. Results We have developed new methods of imaging infection threads using novel and traditional cell wall fluorescent labels, and laser confocal scanning microscopy. We applied a new Periodic Acid Schiff (PAS) stain using rhodamine-123 to the labelling of whole cleared infected roots of Medicago truncatula; which allowed for imaging of infection threads in greater 3D detail than had previously been achieved. By the combination of the above method and a calcofluor-white counter-stain, we also succeeded in labelling infection threads and plant cell walls separately, and have potentially discovered a way in which the infection thread matrix can be visualized. Conclusions Our methods have made the imaging and study of infection threads more effective and informative, and present exciting new opportunities for future research in the area.


Sign in / Sign up

Export Citation Format

Share Document