scholarly journals Regulation of fixLJ by Hfq Controls Symbiotically Important Genes in Sinorhizobium meliloti

2016 ◽  
Vol 29 (11) ◽  
pp. 844-853 ◽  
Author(s):  
Mengsheng Gao ◽  
Hahn Nguyen ◽  
Isai Salas González ◽  
Max Teplitski

The RNA-binding chaperone Hfq plays critical roles in the establishment and functionality of the symbiosis between Sinorhizobium meliloti and its legume hosts. A mutation in hfq reduces symbiotic efficiency resulting in a Fix− phenotype, characterized by the inability of the bacterium to fix nitrogen. At least in part, this is due to the ability of Hfq to regulate the fixLJ operon, which encodes a sensor kinase–response regulator pair that controls expression of the nitrogenase genes. The ability of Hfq to bind fixLJ in vitro and in planta was demonstrated with gel shift and coimmunoprecipitation experiments. Two (ARN)2 motifs in the fixLJ message were the likely sites through which Hfq exerted its posttranscriptional control. Consistent with the regulatory effects of Hfq, downstream genes controlled by FixLJ (such as nifK, noeB) were also subject to Hfq regulation in planta.

2006 ◽  
Vol 74 (8) ◽  
pp. 4462-4473 ◽  
Author(s):  
Michelle A. Laskowski ◽  
Barbara I. Kazmierczak

ABSTRACT Pseudomonas aeruginosa is an opportunistic pathogen capable of causing both acute and chronic infections in a wide range of hosts. Expression of the type III secretion system (T3SS) proteins is correlated with virulence in models of acute infection, while downregulation of the T3SS and upregulation of genes important for biofilm formation are observed during chronic infections. RetS, a hybrid sensor kinase-response regulator protein of P. aeruginosa, plays a key role in the reciprocal regulation of virulence factors required for acute versus chronic infection and is postulated to act in concert with two other sensor kinase-response regulator hybrids, GacS and LadS. This work examines the roles of the putative sensing and signal transduction domains of RetS in induction of the T3SS in vitro and in a murine model of acute pneumonia. We identify distinct signaling roles for the tandem receiver domains of RetS and present evidence suggesting that RetS may serve as a substrate for another sensor kinase. Phenotypes associated with RetS alleles lacking periplasmic and/or transmembrane domains further indicate that the periplasmic domain of RetS may transmit a signal that inhibits RetS activity during acute infections.


2007 ◽  
Vol 82 (3) ◽  
pp. 1547-1557 ◽  
Author(s):  
Kishore Kakani ◽  
Ron Reade ◽  
Umesh Katpally ◽  
Thomas Smith ◽  
D'Ann Rochon

ABSTRACT The Cucumber necrosis virus (CNV) particle is a T=3 icosahedron consisting of 180 identical coat protein (CP) subunits. Plants infected with wild-type CNV accumulate a high number of T=3 particles, but other particle forms have not been observed. Particle polymorphism in several T=3 icosahedral viruses has been observed in vitro following the removal of an extended N-terminal region of the CP subunit. In the case of CNV, we have recently described the structure of T=1 particles that accumulate in planta during infection by a CNV mutant (R1+2) in which a large portion of the N-terminal RNA binding domain (R-domain) has been deleted. In this report we further describe properties of this mutant and other CP mutants that produce polymorphic particles. The T=1 particles produced by R1+2 mutants were found to encapsidate a 1.9-kb RNA species as well as smaller RNA species that are similar to previously described CNV defective interfering RNAs. Other R-domain mutants were found to encapsidate a range of specifically sized less-than-full-length CNV RNAs. Mutation of a conserved proline residue in the arm domain near its junction with the shell domain also influenced T=1 particle formation. The proportion of polymorphic particles increased when the mutation was incorporated into R-domain deletion mutants. Our results suggest that both the R-domain and the arm play important roles in the formation of T=3 particles. In addition, the encapsidation of specific CNV RNA species by individual mutants indicates that the R-domain plays a role in the nature of CNV RNA encapsidated in particles.


2005 ◽  
Vol 187 (9) ◽  
pp. 3267-3272 ◽  
Author(s):  
Gabriela R. Peña-Sandoval ◽  
Ohsuk Kwon ◽  
Dimitris Georgellis

ABSTRACT The Arc two-component system, comprising the ArcB sensor kinase and the ArcA response regulator, modulates the expression of numerous genes in response to the respiratory conditions of growth. Under anoxic growth conditions, ArcB autophosphorylates and transphosphorylates ArcA, which in turn represses or activates its target operons. Under aerobic growth conditions, phosphorylated ArcA (ArcA-P) dephosphorylates and its transcriptional regulation is released. The dephosphorylation of ArcA-P has been shown to occur, at least in vitro, via an ArcAAsp54-P → ArcBHis717-P → ArcBAsp576-P → Pi reverse phosphorelay. In this study, the physiological significance of this pathway was assessed. The results demonstrate that the receiver and phosphotransfer domains of the tripartite sensor kinase ArcB are necessary and sufficient for efficient ArcA-P dephosphorylation in vivo.


2004 ◽  
Vol 186 (7) ◽  
pp. 2085-2090 ◽  
Author(s):  
Claudia Rodriguez ◽  
Ohsuk Kwon ◽  
Dimitris Georgellis

ABSTRACT The Arc two-component system, comprising the ArcB sensor kinase and the ArcA response regulator, modulates the expression of numerous genes in response to the respiratory growth conditions. Under anoxic growth conditions ArcB autophosphorylates and transphosphorylates ArcA, which in turn represses or activates its target operons. The anaerobic metabolite d-lactate has been shown to stimulate the in vitro autophosphorylating activity of ArcB. In this study, the in vivo effect of d-lactate on the kinase activity of ArcB was assessed. The results demonstrate that d-lactate does not act as a direct signal for activation of ArcB, as previously proposed, but acts as a physiologically significant effector that amplifies ArcB kinase activity.


2006 ◽  
Vol 189 (2) ◽  
pp. 325-335 ◽  
Author(s):  
Simona Romagnoli ◽  
F. Robert Tabita

ABSTRACT The CbbRRS system is an atypical three-protein two-component system that modulates the expression of the cbb I CO2 fixation operon of Rhodopseudomonas palustris, possibly in response to a redox signal. It consists of a membrane-bound hybrid sensor kinase, CbbSR, with a transmitter and receiver domain, and two response regulator proteins, CbbRR1 and CbbRR2. No detectable helix-turn-helix DNA binding domain is associated with either response regulator, but an HPt domain and a second receiver domain are predicted at the C-terminal region of CbbRR1 and CbbRR2, respectively. The abundance of conserved residues predicted to participate in a His-Asp phosphorelay raised the question of their de facto involvement. In this study, the role of the multiple receiver domains was elucidated in vitro by generating site-directed mutants of the putative conserved residues. Distinct phosphorylation patterns were obtained with two truncated versions of the hybrid sensor kinase, CbbSRT189 and CbbSRR96 (CbbSR beginning at residues T189 and R96, respectively). These constructs also exhibited substantially different affinities for ATP and phosphorylation stability, which was found to be dependent on a conserved Asp residue (Asp-696) within the kinase receiver domain. Asp-696 also played an important role in defining the specificity of phosphorylation for response regulators CbbRR1 or CbbRR2, and this residue appeared to act in conjunction with residues within the region from Arg-96 to Thr-189 at the N terminus of the sensor kinase. The net effect of concerted interactions at these distinct regions of CbbSR created an internal molecular switch that appears to coordinate a unique branched phosphorelay system.


2003 ◽  
Vol 16 (3) ◽  
pp. 238-248 ◽  
Author(s):  
Massimo Merighi ◽  
Doris R. Majerczak ◽  
Elizabeth H. Stover ◽  
David L. Coplin

A regulatory cascade activating hrp/hrc type III secretion and effector genes was delineated in Pantoea stewartii subsp. stewartii, a bacterial pathogen of corn. Four hrp regulatory genes were characterized: hrpX and hrpY encode the sensor kinase and response regulator, respectively, of a two-component signal transduction system; hrpS encodes an NtrC-like transcriptional enhancer; and hrpL encodes an alternative sigma factor. Epistasis analysis, expression studies using gene fusions, and genetic reconstruction of each step in Escherichia coli were used to delineate the following pathway: HrpY activates hrpS and also positively auto-regulates the hrpXY operon. In turn, HrpS is required for full activation of the σ54-dependent hrpL promoter. Finally, HrpL controls expression of all known hrp and wts genes. In vitro, hrpS and all downstream hrp genes were regulated by pH and salt concentration. Mutants with in-frame deletions in hrpX were still partially virulent on corn but were unable to sense the chemical or metabolic signals that induce hrp genes in vitro. Site-directed mutagenesis of HrpY indicated that aspartate 57 is the probable phosphorylation site and that it is needed for activity. These findings suggest that both HrpX and an alternate mechanism are involved in the activation of HrpY in planta.


2014 ◽  
Vol 80 (6) ◽  
pp. 1972-1984 ◽  
Author(s):  
M. Broberg ◽  
G. W. Lee ◽  
J. Nykyri ◽  
Y. H. Lee ◽  
M. Pirhonen ◽  
...  

ABSTRACTExpA (GacA) is a global response regulator that controls the expression of major virulence genes, such as those encoding plant cell wall-degrading enzymes (PCWDEs) in the model soft rot phytopathogenPectobacterium wasabiaeSCC3193. Several studies with pectobacteria as well as related phytopathogenic gammaproteobacteria, such asDickeyaandPseudomonas, suggest that the control of virulence by ExpA and its homologues is executed partly by modulating the activity of RsmA, an RNA-binding posttranscriptional regulator. To elucidate the extent of the overlap between the ExpA and RsmA regulons inP. wasabiae, we characterized both regulons by microarray analysis. To do this, we compared the transcriptomes of the wild-type strain, anexpAmutant, anrsmAmutant, and anexpA rsmAdouble mutant. The microarray data for selected virulence-related genes were confirmed through quantitative reverse transcription (qRT-PCR). Subsequently, assays were performed to link the observed transcriptome differences to changes in bacterial phenotypes such as growth, motility, PCWDE production, and virulencein planta. An extensive overlap between the ExpA and RsmA regulons was observed, suggesting that a substantial portion of ExpA regulation appears to be mediated through RsmA. However, a number of genes involved in the electron transport chain and oligogalacturonide metabolism, among other processes, were identified as being regulated by ExpA independently of RsmA. These results suggest that ExpA may only partially impact fitness and virulence via RsmA.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Pallabi Basu ◽  
Maya Elgrably-Weiss ◽  
Fouad Hassouna ◽  
Manoj Kumar ◽  
Reuven Wiener ◽  
...  

AbstractThe RNA chaperone Hfq, acting as a hexamer, is a known mediator of post-transcriptional regulation, expediting basepairing between small RNAs (sRNAs) and their target mRNAs. However, the intricate details associated with Hfq-RNA biogenesis are still unclear. Previously, we reported that the stringent response regulator, RelA, is a functional partner of Hfq that facilitates Hfq-mediated sRNA–mRNA regulation in vivo and induces Hfq hexamerization in vitro. Here we show that RelA-mediated Hfq hexamerization requires an initial binding of RNA, preferably sRNA to Hfq monomers. By interacting with a Shine–Dalgarno-like sequence (GGAG) in the sRNA, RelA stabilizes the initially unstable complex of RNA bound-Hfq monomer, enabling the attachment of more Hfq subunits to form a functional hexamer. Overall, our study showing that RNA binding to Hfq monomers is at the heart of RelA-mediated Hfq hexamerization, challenges the previous concept that only Hfq hexamers can bind RNA.


2020 ◽  
Author(s):  
Pallabi Basu ◽  
Maya Elgrably-Weiss ◽  
Fouad Hassouna ◽  
Manoj Kumar ◽  
Reuven Wiener ◽  
...  

AbstractThe RNA chaperone Hfq acting as a hexamer, is a known mediator of post-transcriptional regulation expediting basepairing between small RNAs (sRNAs) and their target mRNAs. However, the intricate details associated with Hfq-RNA biogenesis are still unclear. Previously, we reported that the stringent response regulator, RelA is a functional partner of Hfq that facilitates Hfq-mediated sRNA-mRNA regulation in vivo and induces Hfq hexamerization in vitro. Here, for the first time we show that RelA-mediated Hfq hexamerization requires an initial binding of RNA, preferably sRNA to Hfq monomers. By interacting with a Shine-Dalgarno-like sequence (GGAG) in the sRNA, RelA stabilizes the initially unstable complex of RNA bound-Hfq monomer, enabling the attachment of more Hfq subunits to form a functional hexamer. Overall, our study showing that RNA binding to Hfq monomers is at the heart of RelA-mediated Hfq hexamerization, challenges the previous concept that only Hfq hexamers can bind RNA.


2021 ◽  
Author(s):  
Nicole R. Wang ◽  
Ryan A. Melnyk ◽  
Christina L. Wiesmann ◽  
Sarzana S. Hossain ◽  
Myoung-Hwan Chi ◽  
...  

AbstractPlants form commensal associations with soil microorganisms, creating a root microbiome that provides benefits to the host including protection against pathogens. While bacteria can inhibit pathogens through production of antimicrobial compounds in vitro, it is largely unknown how microbiota contribute to pathogen protection in planta. We developed a gnotobiotic model system consisting of Arabidopsis thaliana, and an opportunistic pathogen Pseudomonas sp. N2C3, to identify mechanisms that determine the outcome of plant-pathogen-microbiome interactions in the rhizosphere. We screened 25 phylogenetically diverse Pseudomonas strains for their ability to protect against N2C3 and found that commensal strains closely related to N2C3 were more likely to protect against pathogenesis. We used a comparative genomics approach to identify unique genes in the protective strains that revealed no genes that correlate with protection, suggesting that variable regulation of components of the core Pseudomonas genome may contribute to pathogen protection. We found that commensal colonization level was highly predictive of protection and so tested deletions in genes previously shown to be required for Arabidopsis rhizosphere colonization. We identified a response regulator colR that is required for Pseudomonas protection from N2C3 and fitness in competition with N2C3 indicating that competitive exclusion may contribute to pathogen protection. We found that Pseudomonas WCS365 also protects against the agricultural pathogen Pseudomonas fuscovaginae SE-1, the causal agent of bacterial sheath brown rot of rice. This work establishes a gnotobiotic model to uncover mechanisms by which members of the microbiome can protect hosts from pathogens and informs our understanding of the use of beneficial strains for microbiome engineering in dysbiotic soil systems.


Sign in / Sign up

Export Citation Format

Share Document