scholarly journals The GHKL ATPase MORC1 Modulates Species-Specific Plant Immunity in Solanaceae

2015 ◽  
Vol 28 (8) ◽  
pp. 927-942 ◽  
Author(s):  
Patricia Manosalva ◽  
Murli Manohar ◽  
Karl-Heinz Kogel ◽  
Hong-Gu Kang ◽  
Daniel F. Klessig

The microrchidia (MORC) proteins, a subset of the GHKL ATPase superfamily, were recently described as components involved in transcriptional gene silencing and plant immunity in Arabidopsis. To assess the role of MORC1 during resistance to Phytophthora infestans in solanaceous species, we altered the expression of the corresponding MORC1 homologs in potato, tomato, and Nicotiana benthamiana. Basal resistance to P. infestans was compromised in StMORC1-silenced potato and enhanced in overexpressing lines, indicating that StMORC1 positively affects immunity. By contrast, silencing SlMORC1 expression in tomato or NbMORC1 expression in N. benthamiana enhanced basal resistance to this oomycete pathogen. In addition, silencing SlMORC1 further enhanced resistance conferred by two resistance genes in tomato. Transient expression of StMORC1 in N. benthamiana accelerated cell death induced by infestin1 (INF1), whereas SlMORC1 or NbMORC1 suppressed it. Domain-swapping and mutational analyses indicated that the C-terminal region dictates the species-specific effects of the solanaceous MORC1 proteins on INF1-induced cell death. This C-terminal region also was required for homodimerization and phosphorylation of recombinant StMORC1 and SlMORC1, and its transient expression induced spontaneous cell death in N. benthamiana. Thus, this C-terminal region likely plays important roles in both determining and modulating the biological activity of MORC1 proteins.

2012 ◽  
Vol 25 (8) ◽  
pp. 1045-1057 ◽  
Author(s):  
Ewa Lukasik-Shreepaathy ◽  
Erik Slootweg ◽  
Hanna Richter ◽  
Aska Goverse ◽  
Ben J. C. Cornelissen ◽  
...  

Plant resistance (R) proteins mediate race-specific immunity and initiate host defenses that are often accompanied by a localized cell-death response. Most R proteins belong to the nucleotide binding-leucine-rich repeat (NB-LRR) protein family, as they carry a central NB-ARC domain fused to an LRR domain. The coiled-coil (CC) domain at the N terminus of some solanaceous NB-LRR proteins is extended with a solanaceae domain (SD). Tomato Mi-1.2, which confers resistance against nematodes, white flies, psyllids, and aphids, encodes a typical SD-CNL protein. Here, we analyzed the role of the extended N terminus for Mi-1.2 activation. Removal of the first part of the N terminus (Nt1) induced Mi-1.2-mediated cell death that could be suppressed by overexpression of the second half of the N-terminal region. Yet, autoactivating NB-ARC-LRR mutants require in trans coexpression of the N-terminal region to induce cell death, indicating that the N terminus functions both as a negative and as a positive regulator. Based on secondary structure predictions, we could link both activities to three distinct subdomains, a typical CC domain and two novel, structurally-conserved helical subdomains called SD1 and SD2. A negative regulatory function could be assigned to the SD1, whereas SD2 and the CC together function as positive regulators of Mi-1.2-mediated cell death.


2013 ◽  
Vol 26 (8) ◽  
pp. 958-968 ◽  
Author(s):  
Weixiao Yin ◽  
Suomeng Dong ◽  
Luchong Zhai ◽  
Yachun Lin ◽  
Xiaobo Zheng ◽  
...  

Soybean root and stem rot is caused by the oomycete pathogen Phytophthora sojae. The interaction between P. sojae and soybean fits the “gene-for-gene” hypothesis. Although more than 10 P. sojae avirulence (Avr) effectors have been genetically identified, nearly half of genetically defined avr genes have been cloned. In a previous bioinformatic and global transcriptional analysis, we identified a P. sojae RxLR effector, Avr1d, which was 125 amino acids in length. Mapping data demonstrated that Avr1d presence or absence in the genome was co-segregated with the Avr1d avirulence phenotype in F2 populations. Transient expression of the Avr1d gene using co-bombardment in soybean isogenic lines revealed that this gene triggered a hypersensitive response (HR) in the presence of Rps1d. Sequencing of Avr1d genes in different P. sojae strains revealed two Avr1d alleles. Although polymorphic, the two Avr1d alleles could trigger Rps1d-mediated HR. P. sojae strains carrying either of the alleles were avirulent on Rps1d soybean lines. Avr1d was upregulated during the germinating cyst and early infection stages. Furthermore, transient expression of Avr1d in Nicotiana benthamiana suppressed BAX-induced cell death and enhanced P. capsici infection. Avr1d also suppressed effector-triggered immunity induction by associating with Avr1b and Rps1b, suggestive of a role in suppressing plant immunity.


mSphere ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Zhu Han ◽  
Dianguang Xiong ◽  
Zhiye Xu ◽  
Tingli Liu ◽  
Chengming Tian

ABSTRACT Canker disease is caused by the fungus Cytospora chrysosperma and damages a wide range of woody plants, causing major losses to crops and native plants. Plant pathogens secrete virulence-related effectors into host cells during infection to regulate plant immunity and promote colonization. However, the functions of C. chrysosperma effectors remain largely unknown. In this study, we used Agrobacterium tumefaciens-mediated transient expression system in Nicotiana benthamiana and confocal microscopy to investigate the immunoregulation roles and subcellular localization of CcCAP1, a virulence-related effector identified in C. chrysosperma. CcCAP1 was significantly induced in the early stages of infection and contains cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins (CAP) superfamily domain with four cysteines. CcCAP1 suppressed the programmed cell death triggered by Bcl-2-associated X protein (BAX) and the elicitin infestin1 (INF1) in transient expression assays with Nicotiana benthamiana. The CAP superfamily domain was sufficient for its cell death-inhibiting activity and three of the four cysteines in the CAP superfamily domain were indispensable for its activity. Pathogen challenge assays in N. benthamiana demonstrated that transient expression of CcCAP1 promoted Botrytis cinerea infection and restricted reactive oxygen species accumulation, callose deposition, and defense-related gene expression. In addition, expression of green fluorescent protein-labeled CcCAP1 in N. benthamiana showed that it localized to both the plant nucleus and the cytoplasm, but the nuclear localization was essential for its full immune inhibiting activity. These results suggest that this virulence-related effector of C. chrysosperma modulates plant immunity and functions mainly via its nuclear localization and the CAP domain. IMPORTANCE The data presented in this study provide a key resource for understanding the biology and molecular basis of necrotrophic pathogen responses to Nicotiana benthamiana resistance utilizing effector proteins, and CcCAP1 may be used in future studies to understand effector-triggered susceptibility processes in the Cytospora chrysosperma-poplar interaction system.


Author(s):  
Lifang Zhang ◽  
Yu Zhao ◽  
Quanmei Tu ◽  
Xiangyang Xue ◽  
Xueqiong Zhu ◽  
...  

Background: Cervical cancer induced by infection with human papillomavirus (HPV) remains a leading cause of mortality for women worldwide although preventive vaccines and early diagnosis have reduced morbidity and mortality. Advanced cervical cancer can only be treated with either chemotherapy or radiotherapy but outcomes are poor. The median survival for advanced cervical cancer patients is only 16.8 months. Methods: We undertook a structural search of peer-reviewed published studies based on 1). Characteristics of programmed cell death ligand-1/programmed cell death-1(PD-L1/PD-1) expression in cervical cancer and upstream regulatory signals of PD-L1/PD-1 expression, 2). The role of the PD-L1/PD-1 axis in cervical carcinogenesis induced by HPV infection and 3). Whether the PD-L1/PD-1 axis has emerged as a potential target for cervical cancer therapies. Results: One hundred and twenty-six published papers were included in the review, demonstrating that expression of PD-L1/PD-1 is associated with HPV-caused cancer, especially with HPV 16 and 18 which account for approximately 70% of cervical cancer cases. HPV E5/E6/E7 oncogenes activate multiple signaling pathways including PI3K/AKT, MAPK, hypoxia-inducible factor 1α, STAT3/NF-kB and MicroRNAs, which regulate PD-L1/PD-1 axis to promote HPV-induced cervical carcinogenesis. The PD-L1/PD-1 axis plays a crucial role in immune escape of cervical cancer through inhibition of host immune response. creating an "immune-privileged" site for initial viral infection and subsequent adaptive immune resistance, which provides a rationale for therapeutic blockade of this axis in HPV-positive cancers. Currently, Phase I/II clinical trials evaluating the effects of PD-L1/PD-1 targeted therapies are in progress for cervical carcinoma, which provide an important opportunity for the application of anti-PD-L1/anti-PD-1 antibodies in cervical cancer treatment. Conclusion: Recent research developments have led to an entirely new class of drugs using antibodies against the PD-L1/PD-1 thus promoting the body’s immune system to fight the cancer. The expression and roles of the PD-L1/ PD-1 axis in the progression of cervical cancer provide great potential for using PD-L1/PD-1 antibodies as a targeted cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document