scholarly journals Abnormal Callose Response Phenotype and Hypersusceptibility to Peronospora parasitica in Defense-Compromised Arabidopsis nim1-1 and Salicylate Hydroxylase-Expressing Plants

2001 ◽  
Vol 14 (4) ◽  
pp. 439-450 ◽  
Author(s):  
Nicole M. Donofrio ◽  
Terrence P. Delaney

To investigate the impact of induced host defenses on the virulence of a compatible Peronospora parasitica strain on Arabidopsis thaliana, we examined growth and development of this pathogen in nim1-1 mutants and transgenic salicylate hydroxylase plants. These plants are unable to respond to or accumulate salicylic acid (SA), respectively, are defective in expression of systemic acquired resistance (SAR), and permit partial growth of some normally avirulent pathogens. We dissected the P. parasitica life cycle into nine stages and compared its progression through these stages in the defense-compromised hosts and in wild-type plants. NahG plants supported the greatest accumulation of pathogen biomass and conidiophore production, followed by nim1-1 and then wild-type plants. Unlike the wild type, NahG and nim1-1 plants showed little induction of the SAR gene PR-1 after colonization with P. parasitica, which is similar to our previous observations. We examined the frequency and morphology of callose deposits around parasite haustoria and found significant differences between the three hosts. NahG plants showed a lower fraction of haustoria surrounded by thick callose encasements and a much higher fraction of hausto-ria with callose limited to thin collars around haustorial necks compared to wild type, whereas nim1-1 plants were intermediate between NahG and wild type. Chemical induction of SAR in plants colonized by P. parasitica converted the extrahaustorial callose phenotype in NahG to resemble closely the wild-type pattern, but had no effect on nim1-1 plants. These results suggest that extrahausto-rial callose deposition is influenced by the presence or lack of SA and that this response may be sensitive to the NIM1/NPR1 pathway. Additionally, the enhanced susceptibility displayed by nim1-1 and NahG plants shows that even wild-type susceptible hosts exert defense functions that reduce disease severity and pathogen fitness.

2001 ◽  
Vol 14 (9) ◽  
pp. 1114-1124 ◽  
Author(s):  
Leslie Friedrich ◽  
Kay Lawton ◽  
Robert Dietrich ◽  
Michael Willits ◽  
Rebecca Cade ◽  
...  

The NIM1 (for noninducible immunity, also known as NPR1) gene is required for the biological and chemical activation of systemic acquired resistance (SAR) in Arabidopsis. Overexpression of NIM1 in wild-type plants (hereafter referred to as NIM1 plants or lines) results in varying degrees of resistance to different pathogens. Experiments were performed to address the basis of the enhanced disease resistance responses seen in the NIM1 plants. The increased resistance observed in the NIM1 lines correlated with increased NIM1 protein levels and rapid induction of PR1 gene expression, a marker for SAR induction in Arabidopsis, following pathogen inoculation. Levels of salicylic acid (SA), an endogenous signaling molecule required for SAR induction, were not significantly increased compared with wild-type plants. SA was required for the enhanced resistance in NIM1 plants, however, suggesting that the effect of NIM1 overexpression is that plants are more responsive to SA or a SA-dependent signal. This hypothesis is supported by the heightened responsiveness that NIM1 lines exhibited to the SAR-inducing compound benzo(1,2,3)-thiadiazole-7-car-bothioic acid S-methyl ester. Furthermore, the increased efficacy of three fungicides was observed in the NIM1 plants, suggesting that a combination of transgenic and chemical approaches may lead to effective and durable disease-control strategies.


2008 ◽  
Vol 5 (5) ◽  
pp. 1287-1294 ◽  
Author(s):  
T. Karl ◽  
A. Guenther ◽  
A. Turnipseed ◽  
E. G. Patton ◽  
K. Jardine

Abstract. Significant ecosystem-scale emissions of methylsalicylate (MeSA), a semivolatile plant hormone thought to act as the mobile signal for systemic acquired resistance (SAR), were observed in an agroforest. Our measurements show that plant internal defence mechanisms can be activated in response to temperature stress and are modulated by water availability on large scales. Highest MeSA fluxes (up to 0.25 mg/m2/h) were observed after plants experienced ambient night-time temperatures of ~7.5°C followed by a large daytime temperature increase (e.g. up to 22°C). Under these conditions estimated night-time leaf temperatures were as low as ~4.6°C, likely inducing a response to prevent chilling injury. Our observations imply that plant hormones can be a significant component of ecosystem scale volatile organic compound (VOC) fluxes (e.g. as high as the total monoterpene (MT) flux) and therefore contribute to the missing VOC budget. If generalized to other ecosystems and different types of stresses these findings suggest that semivolatile plant hormones have been overlooked by investigations of the impact of biogenic VOCs on aerosol formation events in forested regions. Our observations show that the presence of MeSA in canopy air serves as an early chemical warning signal indicating ecosystem-scale stresses before visible damage becomes apparent. As a chemical metric, ecosystem emission measurements of MeSA in ambient air could therefore support field studies investigating factors that adversely affect plant growth.


2001 ◽  
Vol 14 (10) ◽  
pp. 1235-1246 ◽  
Author(s):  
Gregory J. Rairdan ◽  
Nicole M. Donofrio ◽  
Terrence P. Delaney

To identify pathogen-induced genes distinct from those involved in systemic acquired resistance, we used cDNA-amplified fragment length polymorphism to examine RNA levels in Arabidopsis thaliana wild type, nim1-1, and salicylate hydroxylase-expressing plants after inoculation with an incompatible isolate of the downy mildew pathogen Peronospora parasitica. Fifteen genes are described, which define three response profiles on the basis of whether their induction requires salicylic acid (SA) accumulation and NIM1/NPR1 activity, SA alone, or neither. Sequence analysis shows that the genes include a calcium binding protein related to TCH3, a protein containing ankyrin repeats and potential transmembrane domains, three glutathione S-transferase gene family members, and a number of small, putatively secreted proteins. We further characterized this set of genes by assessing their expression patterns in each of the three plant lines after inoculation with a compatible P. parasitica isolate and after treatment with the SA analog 2,6-dichloroisonicotinic acid. Some of the genes within subclasses showed different requirements for SA accumulation and NIM1/NPR1 activity, depending upon which elicitor was used, indicating that those genes were not coordinately regulated and that the regulatory pathways are more complex than simple linear models would indicate.


1998 ◽  
Vol 11 (8) ◽  
pp. 795-800 ◽  
Author(s):  
Michael G. Willits ◽  
John A. Ryals

Salicylic acid (SA) has been proposed as the systemic signal for the induction of systemic acquired resistance (SAR). It has been suggested that SA is synthesized at the site of pathogen-induced necrosis and is translocated to induce SAR in uninfected leaves. Grafting studies between wild-type tobacco plants and plants that are unable to accumulate significant amounts of SA have shown that the large increase in SA accumulation seen in inoculated leaves is not necessary for SAR induction, suggesting that SA is not the primary systemic signal. However, these studies have not addressed whether decreased levels of SA accumulation in inoculated leaves are sufficient to fully induce SAR. In this study, we have determined the relationship between free SA levels in the inoculated leaf and SAR induction in tobacco. These results support our previous conclusion that SA is not likely to be the systemic signal.


2005 ◽  
Vol 18 (6) ◽  
pp. 511-520 ◽  
Author(s):  
Mawsheng Chern ◽  
Heather A. Fitzgerald ◽  
Patrick E. Canlas ◽  
Duroy A. Navarre ◽  
Pamela C. Ronald

Arabidopsis NPR1/NIM1 is a key regulator of systemic acquired resistance (SAR), which confers lasting broad-spectrum resistance. Previous reports indicate that rice has a disease-resistance pathway similar to the Arabidopsis SAR pathway. Here we report the isolation and characterization of a rice NPR1 homologue (NH1). Transgenic rice plants overexpressing NH1 (NH1ox) acquire high levels of resistance to Xanthomonas oryzae pv. oryzae. The resistance phenotype is heritable and correlates with the presence of the transgene and reduced bacterial growth. Northern analysis shows that NH1ox rice spontaneously activates defense genes, contrasting with NPR1-overexpressing Arabidopsis, where defense genes are not activated until induction. Wild-type NH1, but not a point mutant corresponding to npr1-1, interacts strongly with the rice transcription factor rTGA2.2 in yeast two-hybrid. Greenhouse-grown NH1ox plants develop lesion-mimic spots on leaves at preflowering stage although no other developmental effects are observed. However, when grown in growth chambers (GCs) under low light, NH1ox plants are dwarfed, indicating elevated sensitivity to light. The GC-grown NH1ox plants show much higher salicylic acid (SA) levels than the wild type, whereas greenhouse-grown NH1ox plants contain lower SA. These results indicate that NH1 may be involved in the regulation of SA in response to environmental changes.


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 529A-529
Author(s):  
Priscilla M. Hockin ◽  
Irvin E. Widders

Systemic acquired resistance (SAR) is a physiological defense response in plants conferring broad spectrum resistance to pathogens. SAR is inducible through infection by necrotizing pathogens or chemical inducers and involves the systemic activation of defense related genes. Our objectives were to evaluate resistance expression to phytophthora soft rot fruit in cucumber in response to increasing concentrations of 2,6 dichloroisonicotinic acid (INA) and benzo (1,2,3)thiadiazole-7-carbothioc acid S-methyl ester (BTH) by foliar applications. Excised leaves exhibited a resistance response to foliar applications of all concentrations of INA and BTH tested when challenge inoculated with Colletotrichum lagenarium. There was increasing benefit with increasing concentration of each chemical applied. Harvested cucumber fruit, 3.4 to 4.5 cm in diameter, were challenge inoculated with Phytophthora capsici; there were no significant chemical and rate interactions in terms of internal lesion measurements. Overall, INA consistently reduced lesion size in cucumber fruit. A bioassay conducted on fruit of different maturity levels, as defined by fruit diameter, revealed that larger sized fruit (4 to 5 cm) were more resistant to fruit rot. Fruit with diameters of 3 to 4 cm from plots treated with BTH showed little resistance as compared to the control and fruit from the same treatment with diameters of 2 to 3 cm. Fruit from plots treated with INA had at least 50% reduction in lesion size than the control. It is unclear if these differences were attributable to changes in physiological or anatomical factors. The true importance of these results should be interpreted with caution. Yield studies have not been conducted, and thus, with the experienced stunting, treatment with 100 ppm INA would be expected to lower yield and perhaps fruit quality. Determination of the optimal application regime and other cultural factors will provide broad control of plant diseases.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 525d-525 ◽  
Author(s):  
Priscilla M. Hockin ◽  
Irvin E. Widders

Systemic acquired resistance (SAR) is a physiological defense response in plants conferring broad spectrum resistance to pathogens. SAR is inducible through infection by necrotizing pathogens or chemical inducers and involves the systemic activation of defense related genes. The objectives of this study were to evaluate resistance expression to Pythium soft rot in fruit of cucumber in response to foliar applications of 2,6-dichloro isonicotinic acid (INA), benzo(1,2,3)thiadiazole-7-carbothioc acid S-methyl ester (CGA 245704), or beta-amino-butyric acid (bABA). Excised leaves from three cucumber cultivars, Vlaspik, Sumpter and SMR 58, exhibited a resistance response to foliar applications of INA (50 ppm) and CGA 245704 (25 ppm) when challenge inoculated with Colletotrichum lagenarium. However, the reduction in lesion incidence by INA was 99% in Vlaspik and only 11% and 18% in Sumpter and SMR 58, respectively. bABA did not enhance resistance in vegetative tissues. Multiple foliar applications of INA and CGA 245704 prior to fruit set were found to be more effective than a single application. Harvested cucumber fruit, 3.0 to 5.0 cm in diameter, were wounded and challenge inoculated with Pythium sp.; no statistically significant differences in infection were observed between controls and fruit from chemically treated plots. In Vlaspik, however, INA and BTH did reduce the rot infection rate in fruit when foliar applications were made early in plant ontogeny, at the four-leaf stage. In addition, larger more mature fruit (4-5 cm diameter) exhibited slower lesion growth than less developed fruit (>3 cm). It is unclear if these differences were attributable to changes in physiological or anatomical factors. These findings indicate that the level of physiological resistance achievable through chemical induction in cucumber is a function of the specific pathogen and the plant organ being infected, i.e., leaves or fruit.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Jamshaid Hussain ◽  
Jian Chen ◽  
Vittoria Locato ◽  
Wilma Sabetta ◽  
Smrutisanjita Behera ◽  
...  

Abstract The infection of Arabidopsis thaliana plants with avirulent pathogens causes the accumulation of cGMP with a biphasic profile downstream of nitric oxide signalling. However, plant enzymes that modulate cGMP levels have yet to be identified, so we generated transgenic A. thaliana plants expressing the rat soluble guanylate cyclase (GC) to increase genetically the level of cGMP and to study the function of cGMP in plant defence responses. Once confirmed that cGMP levels were higher in the GC transgenic lines than in wild-type controls, the GC transgenic plants were then challenged with bacterial pathogens and their defence responses were characterized. Although local resistance was similar in the GC transgenic and wild-type lines, differences in the redox state suggested potential cross-talk between cGMP and the glutathione redox system. Furthermore, large-scale transcriptomic and proteomic analysis highlighted the significant modulation of both gene expression and protein abundance at the infection site, inhibiting the establishment of systemic acquired resistance. Our data indicate that cGMP plays a key role in local responses controlling the induction of systemic acquired resistance in plants challenged with avirulent pathogens.


1998 ◽  
Vol 11 (7) ◽  
pp. 643-658 ◽  
Author(s):  
Shericca W. Morris ◽  
Bernard Vernooij ◽  
Somkiat Titatarn ◽  
Mark Starrett ◽  
Steve Thomas ◽  
...  

Systemic acquired resistance (SAR) is a widely distributed plant defense system that confers broad-spectrum disease resistance and is accompanied by coordinate expression of the so-called SAR genes. This type of resistance and SAR gene expression can be mimicked with chemical inducers of resistance. Here, we report that chemical inducers of resistance are active in maize. Chemical induction increases resistance to downy mildew and activates expression of the maize PR-1 and PR-5 genes. These genes are also coordinately activated by pathogen infection and function as indicators of the defense reaction. Specifically, after pathogen infection, the PR-1 and PR-5 genes are induced more rapidly and more strongly in an incompatible than in a compatible interaction. In addition, we show that monocot lesion mimic plants also express these defense-related genes and that they have increased levels of salicylic acid after lesions develop, similar to pathogen-infected maize plants. The existence of chemically inducible disease resistance and PR-1 and PR-5 gene expression in maize indicates that maize is similar to dicots in many aspects of induced resistance. This reinforces the notion of an ancient plant-inducible defense pathway against pathogen attack that is shared between monocots and dicots.


Sign in / Sign up

Export Citation Format

Share Document