scholarly journals First Report of a Stunt Nematode (Tylenchorhynchus agri) from Pitaya (Hylocereus polyrhizus) in Guangxi Province of China

Plant Disease ◽  
2018 ◽  
Vol 102 (12) ◽  
pp. 2662 ◽  
Author(s):  
Y. Zhang ◽  
X. Lu ◽  
J. Huang ◽  
Z. Liu
2020 ◽  
Vol 102 (3) ◽  
pp. 971-971
Author(s):  
Zhen Qing ◽  
Dan Xiao ◽  
Haiyun Chen ◽  
Yanan Shen ◽  
Limei Pan ◽  
...  

2000 ◽  
Vol 74 (5) ◽  
pp. 969-975 ◽  
Author(s):  
You Xing Li

Until recently, paleontologists believed tentaculitids became extinct by the end of the Frasnian. Lyaschenko (1958) described the youngest occurrence of the genera Styliolina and Homoctenus from the Frasnian of Russia. However, in Europe and North Africa, Lardeux (1969) proposed that Homoctenus ultimus pergracilis persisted into the Famennian. Sauerland (1983) reported the occurrence in France of the genera Styliolina and Striatostyliolina in the cicatricosa ostracod Zone (Frasnian), and Homoctenus in the splendens ostracod Zone (Frasnian-Famennian, upper gigas—middle triangularis conodont Zones). The first report of Famennian tentaculitids in China was from the Dachang area in Guangxi Province, China by Li and Hamada (1986).


Plant Disease ◽  
2018 ◽  
Vol 102 (6) ◽  
pp. 1175-1175 ◽  
Author(s):  
H. J. Zhao ◽  
S. C. Chen ◽  
Y. F. Chen ◽  
C. C. Zou ◽  
X. L. Wang ◽  
...  

Plant Disease ◽  
2021 ◽  
Author(s):  
Jiang Ni ◽  
B. R. Lin ◽  
Lisha Song ◽  
Guiyu Tan ◽  
Jiang zhan Zhang ◽  
...  

Sarcandra glabra is an important Chinese medicinal plant, which was widely cultivated under forest in south China. Guangxi province is the main producing areas of this herb. In June 2019, a serious leaf disease was found causing severe defoliation in the S. glabra plantation under bamboo forest in Rongan country, Guangxi province (109°13′N′′E). About 70% of the plants in the plantation (300 ha) showed the similar symptoms. Initially, circular lesions appeared on young leaves as black spots (about 1 to 2 mm). Then, the spots gradually enlarged usually with an obvious yellowish margin (6 to 8 mm). Finally, the lesions coalesced and formed irregular, black, and large necrotic areas, resulting in the leaf abscission. For pathogen isolation, small pieces of tissue (5×5 mm) taken from 25 diseased leaves were sterilized with 75% ethanol for 30 s, subsequently, soaked in 0.1% HgCl2 for 2 min, rinsed three times in sterile distilled water, dried, and then placed aseptically onto the potato dextrose agar (PDA) plates, and incubated at 28 °C (12 h/12 h light/dark). Three days later, the isolates were placed on a new PDA plate for subsequent purification and sporulation. 20 pure fungal isolates were obtained from single spores. Of which, 15 isolates showed similar morphological characteristics.The colonies on PDA were round, dense, gray edge and dark gray in center area. Conidia in culture were appeared light brown, cylindrical in shape, with 0 to 8 septa, and 55 to 165 μm × 5.2 to 13.5 μm in size (mean = 106.2 μm × 8.6 μm, n = 30). These morphological characteristics resemble those of Corynespora sp. (Berk. & M.A. Curtis) C.T. Wei (Ellis et al. 1971). A single-spore isolate (ZD5) was selected from the 15 fungal isolates for a subsequent molecular identification. The genes of internal transcribed spacer (ITS) of ribosomal DNA, β-tublin, and actin were amplified with the primer pairs ITS-1/ITS-4 (White et al. 1990), β-tubulin 2-Bt2a/Bt2b (Glass and Donaldson 1995), ACT-512F/ACT-783R (Carbone and Kohn 1999), respectively. And the ITS, β-tublin, and actin sequences were deposited in the GenBank database with the accession numbers MW362446, MW367029, and MW533122. Blast analysis and neighbor-joining analysis based on ITS, β-tublin, and actin sequences using MEGA 6 revealed that the isolate was placed in the same clade as C. cassicola with 100% bootstrap support. Pathogenicity test was performed on the two-year-old potted S. glabra. Six-mm-diameter mycelial plugs were attached to the healthy leaves of S. glabra for co-culture, while the control group was attached with PDA. All plants were covered with plastic bags for 2 days in order to maintain high humidity and cultured in a greenhouse at 28 °C with a 12-h/12-h light/dark cycle. The symptoms appeared 2 days after co-culture were identical to those observed in the field. The same fungus was re-isolated from the lesions, and further morphological characterization and molecular assays, as described above.The control leaves remained symptomless during the pathogenicity tests. According to the previous literatures, C. cassicola is a plant pathogenic fungus with a broad host range, which can damage diverse tropical plants including Salvia miltiorrhiza (Lu et al. 2019), Solanum americanum (Wagner and Louise 2019), Vitex rotundifolia (Yeh and Kirschner 2017), Cucumis sativus, Lycopersicon esculentum (Hsu et al. 2002), Carica papaya (Tsai et al. 2015),and so on. To our knowledge, this is the first report of C. cassicola causing leaf spot on S. glabra in China.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abd Rahim Huda-Shakirah ◽  
Yee Jia Kee ◽  
Kak Leong Wong ◽  
Latiffah Zakaria ◽  
Masratul Hawa Mohd

AbstractThis study aimed to characterize the new fungal disease on the stem of red-fleshed dragon fruit (Hylocereus polyrhizus) in Malaysia, which is known as gray blight through morphological, molecular and pathogenicity analyses. Nine fungal isolates were isolated from nine blighted stems of H. polyrhizus. Based on morphological characteristics, DNA sequences and phylogeny (ITS, TEF1-α, and β-tubulin), the fungal isolates were identified as Diaporthe arecae, D. eugeniae, D. hongkongensis, D. phaseolorum, and D. tectonendophytica. Six isolates recovered from the Cameron Highlands, Pahang belonged to D. eugeniae (DF1 and DF3), D. hongkongensis (DF9), D. phaseolorum (DF2 and DF12), and D. tectonendophytica (DF7), whereas three isolates from Bukit Kor, Terengganu were recognized as D. arecae (DFP3), D. eugeniae (DFP4), and D. tectonendophytica (DFP2). Diaporthe eugeniae and D. tectonendophytica were found in both Pahang and Terengganu, D. phaseolorum and D. hongkongensis in Pahang, whereas D. arecae only in Terengganu. The role of the Diaporthe isolates in causing stem gray blight of H. polyrhizus was confirmed. To date, only D. phaseolorum has been previously reported on Hylocereus undatus. This is the first report on D. arecae, D. eugeniae, D. hongkongensis, D. phaseolorum, and D. tectonendophytica causing stem gray blight of H. polyrhizus worldwide.


Plant Disease ◽  
2020 ◽  
Vol 104 (3) ◽  
pp. 993
Author(s):  
Qimeng Zhang ◽  
Dongmei Zhou ◽  
Wen Jiang ◽  
Hongli Zhu ◽  
Sheng Deng ◽  
...  

Plant Disease ◽  
2021 ◽  
Author(s):  
Luming Jia ◽  
H.Y. Wu

Sweet potato (Ipomoea batatas Lam.) is the seventh most widely cultivated food crop in the world and the sixth most widely cultivated food crop in China. In June 2021, sweet potato plants were found to be displaying nutrient deficiencies with red leaves in a sweet potato field in Hepu County, Beihai City, Guangxi Province (21°37′43.41"N,109°10′58.74"E). Black irregular protuberant scars on tubers and nodular galls on roots were found. Thirty-five sweet potato ‘Variety Guiziweishu No. 1’ tubers were randomly collected and 97% were infected with root-knot nematodes. Females (n = 20) had perineal patterns that were oval, with moderate to high dorsal arches, the lateral field was not obvious or absent. Morphological measurement of females (n = 20) were made from micrographs taken with a microscope (Axio Imager, Z2, ZEISS). Measurements (mean + standard error) were: body length (BL) = 932.8 ± 18.4 μm; maximum body width (BW) = 588.8 ± 22.0 μm; vulval slit length = 19.6 ± 0.6 μm; and, vulval slit to anus distance = 22.3±0.8 μm. Morphological measurements of second-stage juveniles (J2; n = 20) were: BL =512.0± 5.9 μm; BW = 17.4 ± 0.6 μm; Stylet length = 13.4 ± 0.2 μm; dorsal pharyngeal gland orifice to stylet base (DGO) =3.4 ± 0.0 μm; and, hyaline tail length = 17.6 ± 0.5 μm. These morphological characteristics fit those of the original description for Meloidogyne enterolobii (Yang and Eisenback 1983). Molecular analyses were conducted to confirm species identification. Genomic DNA was extracted from 12 single J2 (Luo et al. 2020). The rDNA-internal transcribed spacer (ITS) region was sequenced using primers V5367/26S (5′-TTGATTACGTCCCTGCCCTTT-3′/5′-TTTCACTCGCCGTTACTAAGG-3′) (Vrain et al. 1992), and the D2–D3 fragment of the 28S rRNA genes using primers D2A/D3B (5′-GTACCGTGAGGGAAAGTTG-3′/5′-TCGGAAGGAACCAGCTACTA-3′) (De Ley et al. 1999). The target gene sequences were 733 bp (GenBank accession no. MZ413814) and 733 bp (MZ411468), respectively; they were all 99-100% similar to those of M. enterolobii sequences available in the GenBank. Species identification was also confirmed using PCR to amplify rDNA-IGS2 with M. enterolobii-specific primers Me-F/Me-R (5′-AACTTTTGTGAAAGTGCCGCTG-3′/5′-TCAGTTCAGGCAGGATCAACC-3′). The electrophoresis results showed a bright band (∼200 bp) only in the lane with the M. enterolobii-specific primers, similar in size to that previously reported for M. enterolobii (Long et al. 2006). Therefore, this Meloidogyne sp. population on sweet potato was identified as M. enterolobii based on its morphological and molecular characteristics. To verify the pathogenicity of nematodes, sweet potato ‘Variety Guiziweishu No. 1’ seedlings were individually planted in 18 cm diameter, 11 cm deep plastic pots containing 1000 cm3 autoclaved sandy soil (sand/soil = 3:1). A total of 15 seedlings were inoculated with 10,000 eggs (the population was same with nematode population in soil the field) and 5 seedlings without eggs were used as a control. Plants were maintained at 25-28°C in a greenhouse. After 2 months, root of inoculated plants exhibited elongated swellings similar to symptoms observed in the field. The noninoculated plants did not have any galls or swelling. A reproduction factor (nematode final population density/initial population density) value of 18.6 was obtained. These results confirmed the nematodes’ pathogenicity. To our knowledge, this is the first report of M. enterolobii on a member of the Convolvulaceae in Guangxi Province. In 2014, the nematode on sweet potato was reported in Guangdong Province (Gao et al. 2014). Guangxi Province is the largest producer of sweet potato in south China and is the third top producing region in the whole country. Meloidogyne enterolobii is a potential risk to the production of sweet potato in this region, and control measures are needed to prevent any further spread.


Plant Disease ◽  
2009 ◽  
Vol 93 (9) ◽  
pp. 971-971 ◽  
Author(s):  
M. Masratul Hawa ◽  
B. Salleh ◽  
Z. Latiffah

Red-fleshed dragon fruit (Hylocereus polyrhizus [Weber] Britton & Rose) is a newly introduced and potential crop in the Malaysian fruit industry. Besides its nutritious value, the fruit is being promoted as a health crop throughout Southeast Asia. In April of 2007, a new disease was observed in major plantations of H. polyrhizus throughout five states (Kelantan, Melaka, Negeri Sembilan, Penang, and Perak) in Malaysia with 41 and 25% disease incidence and severity, respectively. Stems of H. polyrhizus showed spots or small, circular, faint pink-to-beige necrotic lesions that generally coalesced as symptoms progressed. Symptom margins of diseased stem samples were surface sterilized with a 70% alcohol swab, cut into small blocks (1.5 × 1.5 × 1.5 cm), soaked in 1% sodium hypochlorite (NaOCI) for 3 min, and rinsed in several changes of sterile distilled water (each 1 min). The surface-sterilized tissues were placed onto potato dextrose agar (PDA) and incubated under alternating 12-h daylight and black light for 7 days. A fungus was consistently isolated from the stems of symptomatic H. polyrhizus and identified as Curvularia lunata (Wakker) Beodijn (1–3) that showed pale brown multicelled conidia (phragmoconidia; three to five celled) that formed apically through a pore (poroconidia) in sympodially, elongating, geniculated conidiophores. Conidia are relatively fusiform, cylindrical, or slightly curved, with one of the central cells being larger and darker (26.15 ± 0.05 μm). All 25 isolates of C. lunata obtained from diseased H. polyrhizus are deposited at the Culture Collection Unit, Universiti Sains Malaysia and available on request. Isolates were tested for pathogenicity by injecting conidial suspensions (1 × 106 conidia/ml) and pricking colonized toothpicks on 25 healthy H. polyrhizus stems. Controls were treated with sterile distilled water and noncolonized toothpicks. All inoculated plants and controls were placed in a greenhouse with day and night temperatures of 30 to 35°C and 23 to 30°C, respectively. Development of external symptoms on inoculated plants was observed continuously every 2 days for 2 weeks. Two weeks after inoculation, all plants inoculated with all isolates of C. lunata developed stem lesions similar to those observed in the field. No symptoms were observed on the control plants and all remained healthy. C. lunata was reisolated from 88% of the inoculated stems, completing Koch's postulates. The pathogenicity test was repeated with the same results. To our knowledge, this is the first report of C. lunata causing a disease on H. polyrhizus. References: (1) M. B. Ellis. Dematiaceous Hyphomycetes. Commonwealth Mycological Institute, Kew, Surrey, England, 1971. (2) R. R. Nelson and F. A. Hassis. Mycologia 56:316, 1964. (3) C. V. Subramanian. Fungi Imperfecti from Madras V. Curvularia. Proc. Indian Acad. Sci. 38:27, 1955.


Sign in / Sign up

Export Citation Format

Share Document