scholarly journals First Report of Pseudomonas syringae pv. syringae Causing Leaf Blight on Hosta ventricosa in China

Plant Disease ◽  
2019 ◽  
Vol 103 (8) ◽  
pp. 2123 ◽  
Author(s):  
Z. X. Liu ◽  
A. R. Dong ◽  
H. Q. Jia ◽  
Y. Zhou ◽  
X. F. Liu ◽  
...  
Plant Disease ◽  
2000 ◽  
Vol 84 (2) ◽  
pp. 200-200 ◽  
Author(s):  
M. T. Mmbaga ◽  
H. Sheng

Cornellian cherry (Cornus mas) is an enduring dogwood that is primarily grown as an ornamental plant in North America, but in parts of Europe, its fruit is eaten fresh or pickled or made into soft drinks, wine, and liqueur. Cornellian cherry has demonstrated longevity and adaptability and has had no previous disease or pest problems. In Tennessee, a leaf blight was first observed during spring 1996 in nursery plants imported from Europe. The disease quickly spread to other C. mas plants within the nursery and has caused severe damage for three consecutive years. The disease affected mostly leaves and young shoots, causing dark brown necrotic lesions and some die back. In early stages, leaf infection consisted of discrete lesions, angular in shape and surrounded by a chlorotic halo. These lesions eventually coalesced to form large dark necrotic patches that covered a large portion of the leaf or the entire leaf. Disease symptoms were restricted to early spring during wet and cool weather; later in the season new growth was free of symptoms. A bacterium was isolated from infected plants and tested for pathogenicity on C. mas ‘Redstone’ and C. florida. Symptoms were reproduced on C. mas but not on C. florida. The bacterium was reisolated from inoculated plants, was characterized as gram-negative and rod-shaped, and produced fluorescent pigment on King's medium B agar. The bacterium had a positive reaction to the Levan test and negative reactions to potato rot and arginine dihydrolase tests and was identified as Pseudomonas syringae (1). Samples of the bacterium were sent to Texas A&M University, College Station, for fatty acid analysis, and the results confirmed the identity of P. syringae. P. syringae has caused severe damage in C. florida in the northwestern United States (2); however, this is the first report of P. syringae on C. mas. References: (1) N. W. Schaad, ed. 1988. Laboratory Guide for Identification of Plant Pathogenic Bacteria. The American Phytopathological Society, St. Paul, MN. (2) W. A. Sinclair et. al. 1987. Diseases of Trees and Shrubs. Cornell University Press, Ithaca, NY.


2016 ◽  
Vol 123 (3) ◽  
pp. 137-140 ◽  
Author(s):  
Okhee Choi ◽  
Byungsam Kang ◽  
Su Kyung Cho ◽  
Jiyeong Park ◽  
Yeyeong Lee ◽  
...  

Author(s):  
Shaozhao Qin ◽  
Xiaoyulong Chen ◽  
Xiaohui Zhou ◽  
Jin Zhao ◽  
Ivan Baccelli ◽  
...  

Plant Disease ◽  
2020 ◽  
pp. PDIS-05-20-1045
Author(s):  
H.-Y. Wu ◽  
C.-Y. Tsai ◽  
Y.-M. Wu ◽  
H.-A. Ariyawansa ◽  
C.-L. Chung ◽  
...  
Keyword(s):  

Plant Disease ◽  
2014 ◽  
Vol 98 (5) ◽  
pp. 691-691 ◽  
Author(s):  
Y. H. Jeon ◽  
W. Cheon

Worldwide, Japanese yew (Taxus cuspidata Sieb. & Zucc.) is a popular garden tree, with large trees also being used for timber. In July 2012, leaf blight was observed on 10% of Japanese yew seedling leaves planted in a 500-m2 field in Andong, Gyeongsangbuk-do Province, South Korea. Typical symptoms included small, brown lesions that were first visible on the leaf margin, which enlarged and coalesced into the leaf becoming brown and blighted. To isolate potential pathogens from infected leaves, small sections of leaf tissue (5 to 10 mm2) were excised from lesion margins. Eight fungi were isolated from eight symptomatic trees, respectively. These fungi were hyphal tipped twice and transferred to potato dextrose agar (PDA) plates for incubation at 25°C. After 7 days, the fungi produced circular mats of white aerial mycelia. After 12 days, black acervuli containing slimy spore masses formed over the mycelial mats. Two representative isolates were further characterized. Their conidia were straight or slightly curved, fusiform to clavate, five-celled with constrictions at the septa, and 17.4 to 28.5 × 5.8 to 7.1 μm. Two to four 19.8- to 30.7-μm-long hyaline filamentous appendages (mostly three appendages) were attached to each apical cell, whereas one 3.7- to 7.1-μm-long hyaline appendage was attached to each basal cell, matching the description for Pestalotiopsis microspora (2). The pathogenicity of the two isolates was tested using 2-year-old plants (T. cuspidata var. nana Rehder; three plants per isolate) in 30-cm-diameter pots filled with soil under greenhouse conditions. The plants were inoculated by spraying the leaves with an atomizer with a conidial suspension (105 conidia/ml; ~50 ml on each plant) cultured for 10 days on PDA. As a control, three plants were inoculated with sterilized water. The plants were covered with plastic bags for 72 h to maintain high relative humidity (24 to 28°C). At 20 days after inoculation, small dark lesions enlarged into brown blight similar to that observed on naturally infected leaves. P. microspora was isolated from all inoculated plants, but not the controls. The fungus was confirmed by molecular analysis of the 5.8S subunit and flanking internal transcribed spaces (ITS1 and ITS2) of rDNA amplified from DNA extracted from single-spore cultures, and amplified with the ITS1/ITS4 primers and sequenced as previously described (4). Sequences were compared with other DNA sequences in GenBank using a BLASTN search. The P. microspora isolates were 99% homologous to other P. microspora (DQ456865, EU279435, FJ459951, and FJ459950). The morphological characteristics, pathogenicity, and molecular data assimilated in this study corresponded with the fungus P. microspora (2). This fungus has been previously reported as the causal agent of scab disease of Psidium guajava in Hawaii, the decline of Torreya taxifolia in Florida, and the leaf blight of Reineckea carnea in China (1,3). Therefore, this study presents the first report of P. microspora as a pathogen on T. cuspidata in Korea. The degree of pathogenicity of P. microspora to the Korean garden evergreen T. cuspidata requires quantification to determine its potential economic damage and to establish effective management practices. References: (1) D. F. Farr and A. Y. Rossman, Fungal Databases, Syst. Mycol. Microbiol. Lab. Retrieved from http://nt.ars-grin.gov/fungaldatabases/ (2) L. M. Keith et al. Plant Dis. 90:16, 2006. (3) S. S. N. Maharachchikumbura. Fungal Diversity 50:167, 2011. (4) T. J. White et al. PCR Protocols. Academic Press, San Diego, CA, 1990.


Plant Disease ◽  
2021 ◽  
Author(s):  
Jiahao Lai ◽  
Guihong Xiong ◽  
Bing Liu ◽  
Weigang Kuang ◽  
Shuilin Song

Blueberry (Vaccinium virgatum), an economically important small fruit crop, is characterized by its highly nutritive compounds and high content and wide diversity of bioactive compounds (Miller et al. 2019). In September 2020, an unknown leaf blight disease was observed on Rabbiteye blueberry at the Agricultural Science and Technology Park of Jiangxi Agricultural University in Nanchang, China (28°45'51"N, 115°50'52"E). Disease surveys were conducted at that time, the results showed that disease incidence was 90% from a sampled population of 100 plants in the field, and this disease had not been found at other cultivation fields in Nanchang. Leaf blight disease on blueberry caused the leaves to shrivel and curl, or even fall off, which hindered floral bud development and subsequent yield potential. Symptoms of the disease initially appeared as irregular brown spots (1 to 7 mm in diameter) on the leaves, subsequently coalescing to form large irregular taupe lesions (4 to 15 mm in diameter) which became curly. As the disease progressed, irregular grey-brown and blighted lesion ran throughout the leaf lamina from leaf tip to entire leaf sheath and finally caused dieback and even shoot blight. To identify the causal agent, 15 small pieces (5 mm2) of symptomatic leaves were excised from the junction of diseased and healthy tissue, surface-sterilized in 75% ethanol solution for 30 sec and 0.1% mercuric chloride solution for 2 min, rinsed three times with sterile distilled water, and then incubated on potato dextrose agar (PDA) at 28°C for 5-7 days in darkness. Five fungal isolates showing similar morphological characteristics were obtained as pure cultures by single-spore isolation. All fungal colonies on PDA were white with sparse creeping hyphae. Pycnidia were spherical, light brown, and produced numerous conidia. Conidia were 10.60 to 20.12 × 1.98 to 3.11 µm (average 15.27 × 2.52 µm, n = 100), fusiform, sickle-shaped, light brown, without septa. Based on morphological characteristics, the fungal isolates were suspected to be Coniella castaneicola (Cui 2015). To further confirm the identity of this putative pathogen, two representative isolates LGZ2 and LGZ3 were selected for molecular identification. The internal transcribed spacer region (ITS) and large subunit (LSU) were amplified and sequenced using primers ITS1/ITS4 (Peever et al. 2004) and LROR/LR7 (Castlebury and Rossman 2002). The sequences of ITS region (GenBank accession nos. MW672530 and MW856809) showed 100% identity with accessions numbers KF564280 (576/576 bp), MW208111 (544/544 bp), MW208112 (544/544 bp) of C. castaneicola. LSU gene sequences (GenBank accession nos. MW856810 to 11) was 99.85% (1324/1326 bp, 1329/1331 bp) identical to the sequences of C. castaneicola (KY473971, KR232683 to 84). Pathogenicity was tested on three blueberry varieties (‘Rabbiteye’, ‘Double Peak’ and ‘Pink Lemonade’), and four healthy young leaves of a potted blueberry of each variety with and without injury were inoculated with 20 μl suspension of prepared spores (106 conidia/mL) derived from 7-day-old cultures of LGZ2, respectively. In addition, four leaves of each variety with and without injury were sprayed with sterile distilled water as a control, respectively. The experiment was repeated three times, and all plants were incubated in a growth chamber (a 12h light and 12h dark period, 25°C, RH greater than 80%). After 4 days, all the inoculated leaves started showing disease symptoms (large irregular grey-brown lesions) as those observed in the field and there was no difference in severity recorded between the blueberry varieties, whereas the control leaves showed no symptoms. The fungus was reisolated from the inoculated leaves and confirmed as C. castaneicola by morphological and molecular identification, fulfilling Koch’s postulates. To our knowledge, this is the first report of C. castaneicola causing leaf blight on blueberries in China. The discovery of this new disease and the identification of the pathogen will provide useful information for developing effective control strategies, reducing economic losses in blueberry production, and promoting the development of the blueberry industry.


2021 ◽  
Vol 10 (17) ◽  
Author(s):  
Takashi Fujikawa ◽  
Yuichi Takikawa ◽  
Yasuhiro Inoue

ABSTRACT Pseudomonas cannabina pv. alisalensis and Pseudomonas syringae pv. maculicola cause bacterial leaf blight and bacterial leaf spot of crucifers (Brassicaceae). Both pathogens are threats to the cultivation of cruciferous crops. Here, we sequenced two strains of each pathogen, which will contribute to the development of countermeasures for the above diseases.


Sign in / Sign up

Export Citation Format

Share Document